Solid State NMR Spectroscopy

BY A.E. ALIEV AND R.V. LAW

1 Introduction

Solid state NMR spectroscopy has now become an enormous field of research: in excess of 1500 publications used this technique in one way or another in the past year. This review takes highlights from all areas of research which we have for clarity's sake divided into subject and further sub-divided by nucleus type.

2 Reviews

Review papers covering theoretical aspects of SSNMR include numerical simulation techniques of SSNMR experiments¹ and application of Lie algebra to NMR.²

The condition for an echo formation has been reviewed in the context of half-integer quadrupole system.³ The common features of the classical echo phenomena and the coherence transfer echo have been highlighted. The article also explains how the measurement of a series of coherence transfer echoes achieves the HR feature of the MQ MAS experiment.

SSB manipulation techniques in MAS NMR have been reviewed by Anzutkin.⁴

Various methodological aspects of half-integer quadrupolar nuclei have been extensively reviewed. Recent advances in experimental developments have been reviewed by Smith and van Eck.⁵ The basic theoretical aspects underlying HR MQ MAS NMR experiment, as well practical aspects involved in the optimisation of its sensitivity, have been presented.⁶ Also discussed has been the occurrence of unusual SSB patterns along the MQ domain; additional references to ongoing progress in the area that has appeared in the recent literature have also been presented. The advantages and drawbacks of various techniques that utilise MQ MAS NMR for studying molecular sieves and related materials have been reviewed.⁷ The techniques reviewed include z-filtered MQ MAS with rotor synchronisation, MQ MAS with CP and MQ MAS with REDOR. Examples of applications include studies of various types of aluminophosphate. ⁵⁹Co NMR of tetrahedric clusters in solution and in the solid state at high fields has been reviewed.⁸ Some recent progress in solid state

 47,49 Ti NMR of inorganics and gels has been reviewed. 9 Some complementary data from 17 O and 13 C NMR and powder XRD has also been included.

The application of SSNMR techniques for the structural determination of polysaccharide¹⁰ and wood and other lignocellulosic materials has been reviewed.¹¹ Published spectroscopic observations pertaining to the crystal structure of native celluloses have been reviewed with emphasis placed on observations from ¹³C SSNMR.¹² Considerable discussion has been devoted to the allomorphic composition of cellulose crystallites in higher plants. Published methods of NMR lineshape analysis for the higher plant celluloses have been reviewed and critiqued, both from the point of view of lineshape theory and from the point of view of self-consistency of inferences that are based on lineshape analyses for different carbons.

Review articles on SSNMR applications to biological materials have included MAS studies of oriented membrane proteins. ¹³ Advantages, practical aspects, and general perspective of MAS on oriented proteins have been presented. Characterisation of polymorphism in pharmaceuticals by SSNMR has also been reviewed. ¹⁴

An overview has been given on recent NMR structural studies of phosphorus chalcogenide glasses and melts.¹⁵ It has been shown that MAS in combination with DQ NMR provides detailed quantitative information on the network structural features present in ionically conducting thiophosphate glasses, spectroscopic and diffraction studies of simple phosphate glasses, ¹⁶ comparative studies of amorphous phosphates by HPLC, NMR and XPS, ¹⁷ and applications of SSNMR in microstructure studies of glasses. ¹⁸ DQ NMR measurements exploiting the dipole coupling between the phosphorus atoms as well as a novel 2D exchange experiment using the scalar coupling have been described for measuring the connectivities of phosphate tetrahedra in glasses. ¹⁹ It has been shown that bonding scenarios of up to four connected tetrahedra and the relative orientations of CS tensors can be determined by 2D NMR. This determination provides an additional verification of connectivities and can enable access to bonding angle data in future.

Reviews covering applications of SSNMR techniques to materials of catalytic importance have included. ^{20,21,22,23,24,25,26} Finally, developments in SSNMR and analytical TEM for advanced understanding of the nature of the nearly amorphous calcium silicate hydrate phases in hardened cement pastes have been reviewed by Richardson. ²⁷

3 Theory

The CP dynamics between ¹H and ¹⁹F in a Viton-type fluoroelastomer have been studied using ¹⁹F MAS and ¹H→19F CP MAS NMR at 188.29 MHz.²⁸ The phenomenological theory of spin thermodynamics based on the spin temperature hypothesis was employed to describe the polarisation transfer between the ¹H and ¹⁹F spin baths. Simultaneous fitting of the evolution of magnetisation in the standard CP and a modified CP(TORQUE) experiment,

using the exact solutions of the equations for the spin thermodynamics, gave unique sets of the parameters $T_{\rm HF}$, $T_{\rm 1p}(^{\rm 1}{\rm H})$ and $T_{\rm 1p}(^{\rm 19}{\rm F})$ for five separate peaks in the ¹⁹F spectra. The values of $T_{\rm 1p}(^{\rm 1}{\rm H})$ and $T_{\rm 1p}(^{\rm 19}{\rm F})$ obtained are consistent with those independently measured by spin-locking experiments.

Theoretical description and experimental observation of residual dipolar couplings between quadrupolar nuclei in HR SSNMR have been reported.²⁹ Nonsecular dipolar couplings between spin-¹/₂ nuclei that are in close proximity to quadrupolar spins have been extensively documented in SSNMR, particularly when involving directly bonded $S = {}^{13}C$, $I = {}^{14}N$ spin pairs. The most notable characteristic of residual dipolar couplings is that they cannot be entirely averaged away by conventional MAS. Nonsecular dipolar couplings can also be expected to arise when both I and S are quadrupolar nuclei. Theoretical and numerical analysis have been presented for homo- or heteronuclear quadrupolar spin pairs in the high field limit. Variable field MQ MAS NMR results have also been presented for a variety of compounds possessing ¹¹B-¹⁴N, ¹¹B-¹¹B and ⁵⁵Mn-⁵⁵Mn spin pairs, that validate these theoretical predictions and illustrate the valuable information that can be extracted from analysing these residual dipolar couplings. The research potential as well as resolution limitations that according to theoretical calculations these effects will impart on MQ MAS spectra recorded at low or moderate magnetic fields have thus been evidenced.

The ²⁹Si and ²⁷Al NMR chemical shifts of the two crystallographic sites of the zeolite mazzite have been evaluated from the NMR shielding tensors calculated using the SOS-DFPT method. ³⁰ The calculations were carried out on one-site and two-site models, including from one to three coordination shells around each site. The effects of the cluster size, basis set extension, and choice of the exchange and correlation functional have been analysed. The effect of geometrical and electronic factors on the NMR chemical shifts have been analysed, showing their dependence on the cluster size and also on the shape of the zeolitic system.

The SOS-DFPT has been used to calculate ²⁹Si shielding constants and chemical shifts in zeolites.³¹ The calculations were carried out on one-site (1T) Si(OSiH₃)₄ and two-site (2T) R₃SiOSiR₃ (R = OSiH₃) models, including three coordination shells around each site. The ²⁹Si NMR chemical shifts have been shown to be very sensitive to the local geometry. A linear correlation between chemical shifts and average SiOSi angles has been established, taking into account two different zeolites, *i.e.* mazzite and zeolite-beta. The use of 1T models allows the assignment of the experimental spectra, whereas that of 2T models, containing eventually four-membered rings, improves considerably the calculation of the absolute ²⁹Si chemical shifts, including those of silicon sites in aluminated zeolites.

To assist in the assignment and interpretation of 23 Na NMR spectra in silicate and aluminosilicate minerals and glasses the 23 Na NMR shieldings and the EFGs at the Na for a number of Na-containing species have been calculated. 32 Included are Na(H₂O) $_n^+$, n = 1, 2, 4, 5, 6 and 8, and Na⁺ complexes with SiH₃OH, SiH₃ONa and O(SiH₃)₂ shieldings and EFGs for Na-

centred clusters extracted from crystalline Na_2SiO_3 and anhydrous sodalite have also been evaluated. Based on 6-31G* SCF optimised geometries and the GIAO method with a 6-31G* basis set a calculated increase in shielding with coordination number (CN) for the $Na(OH_2)_n^+$, n=4, 6, 8 series was found. This agrees with experimental trends. Calculated changes in the Na shielding as water is replaced by bridging or nonbridging silicate O atoms were also consistent with experimental observations. Theoretical studies, based on calculation of deshielding contributions for individual O-containing ligands and experimental values for the Na–O distances, were further extended to 12 different Na sites in silicate and aluminosilicate minerals which have recently been studied experimentally.

Experimental and theoretical evidences of enhanced effects of CSA on the DQ dipolar SSB patterns have been presented.³³ The DQ MAS NMR response to a five-pulse sequence of dipolar coupled spin-¹/₂ pairs in a powder sample of barium chlorate monohydrate has been investigated for different spinning frequencies and different durations of excitation and reconversion periods. It has been shown that the basic understanding of the effect of chemical shift interaction on MQ SSB patterns will be useful in the quantitative analysis of MQ spectra for structural purposes and may be exploited for measurements of ¹H CSA.

Analytical expressions for MQ signal generation of quadrupole nuclei have been derived.³⁴ Combined with numerical simulation of the double rotor motion, a strategy has been suggested for partial SSB suppression in MQ NMR spectra. Synchronisation of MQ excitation and selective flip pulses with outer rotor motion increases outer rotor speed effectively two times. This has also been demonstrated experimentally by TQ-SQ correlation spectra of ²³Na and ⁶⁷Rb.

The mathematical foundation of the determination of protein structure from orientational constraints has been described.³⁵ The tools used are vector algebra, gram matrices, and determinants. The report describes methods applied to the determination of protein structure by SSNMR. Examples have been given relating to the structure of the peptide gramicidin A.

The phenomenological theory of spin thermodynamics based on the spin temperature hypothesis has been employed to describe the CP dynamics between two abundant nuclei, $^{19}\mathrm{F}$ and $^{1}\mathrm{H}$, when the number of fluorine atoms is not substantially less than the number of hydrogens. The influence of $T_{1\rho}\mathrm{s}$ of both nuclei and the relative magnitude (heat capacity) of the two spin baths have been incorporated explicitly into the analysis in order to derive values for the parameters involved in the CP dynamics. Numerical calculations have been performed to clarify the difference in the evolution of magnetisation in variable contact time CP experiments between the $^{1}\mathrm{H} \rightarrow ^{13}\mathrm{C}$ and $^{1}\mathrm{H} \rightarrow ^{19}\mathrm{F}$ cases. A new type of CP-drain experiment has been developed for observing the residual $^{1}\mathrm{H}$ magnetisation after $^{1}\mathrm{H} \rightarrow ^{19}\mathrm{F}$ CP. Direct polarisation $^{19}\mathrm{F}$ MAS, $^{1}\mathrm{H} \rightarrow ^{19}\mathrm{F}$ CP, and $^{1}\mathrm{H} \rightarrow ^{19}\mathrm{F}$ CP-drain MAS NMR spectra have been measured for a fluorinated polyimide, 6FDA/ODA. The CP dynamics between $^{1}\mathrm{H}$ and $^{19}\mathrm{F}$ for the polyimide have been analysed on the basis of the spin thermodynamics

theory. The constant for polarisation transfer has been determined by the analysis using the effective CP parameters, which were directly obtained from

the CP and CP-drain experiments, together with independently measured values of $T_{1\rho}(^{1}\text{H})$ and $T_{1\rho}(^{19}\text{F})$. CP from a spin I = $^{1}/_{2}$ nucleus (e.g. ^{1}H) to a spin S = 3/2 nucleus (e.g. ^{23}Na) or a spin S = 5/2 nucleus (e.g. ^{27}Al or ^{17}O) in static powder samples has been investigated. The results of conventional SQ, TQ and five-quantum CP experiments have been presented and discussed. Based on a generalisation of an existing theory of CP to quadrupolar nuclei, computer simulations have been used to model the intensity and lineshape variations observed in CP NMR spectra as a function of the rf field strengths of the two simultaneous spin-locking pulses.³⁷ These intensity and lineshape variations can also be understood in terms of the spin S = 3/2 or 5/2 nutation rates determined from experimental quadrupolar nutation spectra. The results of this study are intended as a preliminary step towards understanding single and MQ CP to quadrupolar nuclei under MAS conditions and the application of these techniques to the MQ MAS NMR experiment.

The spin-locking mechanism of the spin I = 3/2 nuclei under MAS has been theoretically and experimentally investigated, and the criterion of adiabatic passage around zero-crossings of the quadrupole splitting was inferred from the time-dependent Schrödinger equation.³⁸ It has been shown that SOQ interaction and off-resonance play important roles in the spin-locking of the quadrupolar nuclei, and they were responsible for the great loss of the spinlocking signals. The spin-locking might be achieved by minimising the effect of the SOQ interaction by using a rf offset.

A formalised many-particle nonrelativistic classical quantised field interpretation of MAS RFDR has been presented.³⁹ A distinction has been made between the MAS spin Hamiltonian and the associated quantised field Hamiltonian. The interactions for a multispin system under MAS conditions have been described in the rotor angle frame using quantum rotor dynamics. In this quasiclassical theoretical framework, the chemical shift, the dipolar interaction, and rf terms of the Hamiltonian have been derived. The effect of a generalised RFDR train of π pulses on a coupled spin system has been evaluated by creating a quantised field average dipolar-Hamiltonian formalism in the interaction frame of the chemical shift and the sample spinning. This derivation shows the analogy between the Hamiltonian in the quantised field and the normal rotating frame representation. The magnitude of this Hamiltonian peaks around the rotational resonance conditions and has a width depending on the number of rotor periods between the π pulses. Its interaction strength can be very significant at the n = 0 condition, when the CS anisotropies of the interacting spins are of the order of their isotropic chemical shift differences.

The representation of second-order broadening effects in SSNMR by general fourth-degree surfaces has been presented. 40 Static SOQ and 'dipolarquadrupolar' interactions have been treated in a unified way. Most experiments involving the fast reorientation of samples such as MAS, variable-angle spinning, DAS, and DOR and MQ MAS have also been illustrated by using averaged fourth-degree surfaces. The equations of the surfaces have been derived analytically and allow the derivation of most results concerning these experiments.

A general formalism has been developed for describing the effects of restricted rotational diffusion on ²H MAS NMR spectra. ⁴¹ The approach is based on the Smoluchowski model that describes restricted rotational diffusion in an arbitrary ordering potential with an arbitrary diffusion tensor. It has been shown that the Smoluchowski model gives a physically more reasonable description of molecular motion than the discrete Markov (jump) model. The models have been shown to be mutually consistent for high ordering potentials and low temperatures provided the diffusion coefficient is sufficiently high. However, for low ordering potentials and high temperatures the discrete Markov model is not a useful approximation and the spectra can only be simulated with restricted rotational diffusion. This is also the case for small diffusion coefficients independent of the ordering potential and the temperature. The formalism is based on finite difference solutions to the stochastic Liouville-von Neumann equation. This defines a linear homogeneous system of coupled parabolic partial differential equations which includes both firstand second-order spatial derivatives. Numerical solutions are very difficult to obtain and some useful finite difference methods have been presented. The results have been elaborated for ²H MAS NMR spectroscopy. Solutions have been obtained both in the presence and absence of rf irradiation and effects of finite pulse width have been included. The method has been applied to the investigation of motional effects on ²H MAS NMR spectra of L-alanine-N,N,N-2H₃. The orientational dependence of the ordering potential and the quadrupole parameters has been determined from the Smoluchowski model. The activation energies have been found to be temperature dependent. These effects have not previously been observed and give new information on molecular motion in this system. The rotational diffusion results have been compared with the discrete Markov model and it has been found that in this case the two models are consistent. The most important difference is that the Markov model does not map out the orientational dependence of the ordering potential and the quadrupole parameters. Another advantage of the rotational diffusion model is that it is physically more reasonable than the Markov model and that the parameters may be interpreted in terms of molecular properties.

A diffusion equation appropriate to the NMR spin diffusion experiments has been analysed using a periodic lattice model.⁴² Effects of disorder in polymer morphology on spin diffusion has been discussed.

A simple model to describe heteronuclear spin decoupling in SSNMR under MAS conditions has been proposed.⁴³ It is based on a coherent description of two heteronuclear dipolar-coupled spins (I and S) and an incoherent description of the interaction of the I-spin with a large number of other I-spins. The abundant and strongly coupled I-spins are irradiated. The selected I-spin is coupled by a spin-diffusion type superoperator to the I-spin bath, and this coupling is described by a single spin-diffusion rate constant. Such a model

allows to simulate efficiently the behavior of a spin system under heteronuclear decoupling in the case of CW irradiation as well as in the case of phase-modulated sequences such as TPPM.

A general treatment of NMR spectra under MAS conditions has been provided that is applicable both to homogeneously and inhomogeneously broadened lines. 44 It is based on a combination of Floquet theory and perturbation theory, and allows the factorisation of the spin system response into three factors that describe different aspects of the resulting MAS spectrum. The first factor directly reflects the Floquet theorem and describes the appearance of SSBs, the other two terms give the integral intensities of the resulting SSBs and their lineshapes and depend on the specific features of the considered interaction. From numerical simulations and the analysis of experimental MAS NMR spectra it was found that for typical spin systems, spinning frequencies of the order of the strongest couplings are sufficient to allow the analysis of the SSB intensities within the approximation of two-spin terms. This scaling of the different contributions together with the strong distance dependence of the dipolar interaction thus leads to a considerable simplification in the fast spinning limit and provides the basis for using the dipolar interaction in HR MAS spectra to obtain local structural information.

An interesting phenomenon of ${}^{1}H^{-13}C$ CP induced by temporary adsorption in nanocapsule dispersions have been reported. ⁴⁵ A special mechanism of CP which is initiated by a temporary adsorption of mobile molecules to the more rigid capsule surface has been proposed.

The concept of MQ CP between an I = 3/2 and an $I = ^1/_2$ spin during MAS have been described. ⁴⁶ Experimental and theoretical results for 23 Na $^{-1}$ H pairs have been presented that elucidate the transfer mechanism and the beneficial effect of adiabatic amplitude modulations of the CP field. The MQ CP approach has been shown to be beneficial for improving the sensitivity of CP MQ MAS experiments and for detecting dipolar correlations.

Procedures for processing data in rotor-synchronised 2D MAS NMR exchange measurements for both structural and dynamic studies have been presented.⁴⁷ It has been shown that there are two distinct data processing procedures that lead to 2D MAS exchange spectra with purely absorptive crosspeaks and processing of 2D MAS exchange data using both procedures may enhance the information content of 2D MAS exchange measurements.

An efficient algorithm for spectral simulations in NMR of rotating solids has been proposed. Averaging over the γ powder angle has been shown to be generally equivalent to a cross correlation of two periodic functions. This together with the frequency-domain simulation procedure COMPUTE allows to reduce the computation time for spectral simulations by typically a factor of 10–30 relative to the original COMPUTE algorithm. The advantage and the general applicability of the new simulation procedure, referred to as γ -COMPUTE, have been demonstrated by simulation of single- and multiple-pulse MAS NMR spectra of $^{31}P_-^{31}P$ and $^{1}H_-^{1}H$ spin pairs influenced by anisotropic CS and homonuclear dipolar interactions.

Reintroduction of the quadrupolar interaction under MAS NMR has been

investigated.⁴⁹ The anisotropy in the dipole–dipole and quadrupole couplings are averaged out in MAS NMR experiments and under conditions of axial symmetry ($\eta=0$), the homologous forms of the respective coupling Hamiltonians have been exploited to show that the quadrupole coupling can also be resurrected by a simple adaptation of a rotor-synchronised pulse sequence previously proposed for the recovery of dipole–dipole couplings. The theory for the recovery of the quadrupole couplings has been developed. Numerical simulations of the quadrupolar (DQ) dephasing observed in the ²H MAS NMR spectra of lipid systems have been used to extract the quadrupolar splitting.

A new assignment method based on the periodic *ab initio* calculation of ²³Na quadrupole coupling information using the CRYSTAL95 code has been described and applied to the multisite problem posed by Na₅P₃O₁₀.6H₂O.⁵⁰

The detailed mechanism of coherence transfer in ²H MAS NMR spectroscopy has been investigated in the presence of molecular motion.⁵¹ An elaborate theoretical formalism has been developed that exploits the properties of Lie algebras to characterise the states of nuclear spin ensembles and to identify the allowed coherence transfer pathways. The functional form of the coherence transfer functions has been investigated within the Floquet-Poincare formalism. Based on these principles a general methodology has been described for evaluating the optimum pulse parameters consistent with maximum sensitivity. The intensity and phase distortions induced by the optimum pulse parameters have been discussed and the importance of incorporating these effects in theoretical simulations has been examined. The results have been verified by experimental spectra of polycrystalline thiourea-²H₄ that have been analysed in terms of a discrete motional model. A theoretical description of CW high frequency LG CP MAS NMR experiments has been presented.⁵² The full time-dependent LG CP MAS Hamiltonian has been replaced by its zero order time-independent Hamiltonian in the interaction representation. Carbon signal enhancements of LG CP MAS experiments have been calculated for spin systems consisting of six ¹H nuclei coupled to one ¹³C nucleus. These simulations have been based on Floquet theory calculations, explicitly taking into account the time dependence because of MAS, and calculations based on the zero-order Hamiltonian. The good agreement between these calculations justifies the use of the zero-order Hamiltonian. The time-dependent intensities of the cross peaks in heteronuclear ¹³C–¹H correlation spectra, extracted from 3D LG CP MAS experiments on a natural abundant D,L-alanine sample with increasing CP mixing times, are in good agreement with the theoretical intensities simulated by using the zero-order Hamiltonian. The approximated LG-CP MAS Hamiltonian can be used to obtain structural information about a proton coupled to a single carbon. The simulated intensities of the carbon signals of an isolated ¹³C-¹H group and a ¹³C-¹H group that is coupled to additional protons, measured by LG-CP MAS experiments with increasing CP mixing times, have been compared. This study suggests that the buildup curve of each LG CP MAS carbon signal and its Fourier transformed CP spectrum can be interpreted in terms of a single distance between the observed ¹³C and

its nearest proton, if the additional protons are removed from this carbon by at least 1.2 times this distance.

Using numerical optimisation procedures it has been shown that it is possible to design composite π rf pulses for MAS NMR spectroscopy by explicitly taking into account the variation of the resonance offset of each crystallite during the application of the rf pulses.⁵³ When using composite rf pulses in experiments such as TOSS, where the delays between the pulses have to be critically adjusted, an optimisation of these delays can lead to the desired performance characteristics. Using molecular cluster models a theoretical *ab initio* study of the ²⁷Al and ³¹P NMR chemical shieldings aimed at obtaining short-range structural information on the aluminophosphate oxynitride (AlPON) catalyst system has been undertaken.⁵⁴ Orthophosphate-like molecular models with P/Al ratio equal to one and varying N/O ratios were used to simulate the experimentally obtained compositions. The computed NMR chemical shieldings reproduce quantitatively the observed features in the ³¹P MAS NMR spectra. The comparison of ²⁷Al isotropic chemical shieldings and the experimental spectra allow to conclude that N/O substitution does not happen in the first coordination shell of aluminum atoms.

A numeric algorithm has been proposed that is suitable to calculate spectral lineshapes influenced by isotropic and anisotropic tumbling under sample spinning conditions.⁵⁵ It is based on the stochastic Liouville equation and a rotational diffusion process described by a stationary Markov operator. An example has been presented demonstrating the potential of off-MAS as a tool to analyse slow tumbling motions.

Ab initio HF and DFT calculations, based upon both cluster and periodic modelling approaches, have been reported for the EFG tensor at sodium in NaNO₂. ⁵⁶ Calculations based on different-sized clusters have been compared and it has been shown that resonable agreement with experiment can be obtained for a symmetrical cluster that extends beyond the immediate coordination environment of Na⁺. It has been suggested that periodic ab initio HF calculations using the standard 6-21G basis set, with suitable basis set optimisation to take into account the cationic nature of sodium, can provide a routine and consistent method for predicting sodium EFG tensor information for ionic sodium compounds.

Ab initio HF MO calculations have been applied to the crystalline imidazole and its derivatives in order to examine systematically the effect of possible N–H···N type H-bonding on the nuclear quadrupole interaction parameters.⁵⁷ The ¹⁴N QCC and the asymmetry parameter (η) of the EFG were found to depend strongly on the size of the molecular clusters, from single molecule, to dimer, trimer and to the infinite molecular chain, *i.e.*, crystalline state, implying that the intermolecular N–H···N hydrogen bond affects significantly the electronic structure of imidazole molecule. A certain correlation between the ¹⁴N QCC and the N–H bond distance R was also found and interpreted on the basis of the MO theory. A re-examination of the observed N–H distances in imidazole derivatives was suggested.

The use of rotational–resonance experiments to achieve homonuclear polarisation transfer between half-integer quadrupolar spins has been proposed. A theoretical description for a homonuclear two-spin system in the framework of Floquet theory has been given. Numerical simulations, as well as analytical Floquet calculations, were performed to analyse the behaviour of such a system. It has been shown that while a rotational–resonance experiment at fixed spinning speed leads only to a partial polarisation transfer, an adiabatic passage through the rotational–resonance condition, achieved by a spinning-speed ramp, promotes polarisation transfer for all components of the SOQ broadened lineshape.

The assignment of SSNMR spectra has been studied by the use of model systems computed with *ab initio* methods.⁵⁹ Hexabenzocoronene derivative has been used. It has been shown that the combination of experimental NMR data with quantum chemical calculations can be employed as a useful tool in determining the structure of solid-state systems in general, especially where other experimental techniques fail.

A theoretical framework for the use of continuously phase modulated rf pulses for homonuclear decoupling in SSNMR has been presented.⁶⁰ Within this framework, new families of decoupling sequences have been derived using numerical optimisation. One of the sequences has been tested experimentally on an ordinary organic solid, and its performance has been compared with standard multiple-pulse sequences. A theoretical and experimental study of the spin dynamics in PISEMA (Polarisation Inversion Spin Exchange at the Magic Angle) to investigate the line-narrowing mechanism has been presented. 61 The study focuses on the effect of neighbouring protons on the spin exchange of a strongly coupled spin pair. The spin exchange has been solved analytically for simple spin systems and has been numerically simulated for many-spin systems. The results show that the dipolar couplings from the neighbouring protons of a strongly coupled spin pair perturb the spin exchange only in the second order and has little contribution to the linewidth of PISEMA spectra in comparison to the separated-local-field spectra. The effects from proton resonance offset and the mismatch of the Hartmann-Hahn condition have also been discussed along with experimental results using model single-crystal

A selectively ²H labeled osmium dihydride has been studied by ²H MAS NMR. ⁶² It was found that the interference between the quadrupolar and homonuclear dipolar interaction results in a characteristic lineshape of the SSBs. The basic properties of the interference of homonuclear dipolar and quadrupolar coupling on the ²H NMR lineshape were elucidated, using average Hamiltonian theory, and exact simulations of the experiments were achieved by stepwise integration of the equation of motion of the density matrix. These simulations show that it is possible to determine the size of the dipolar interaction and thus the ²H–²H distance from the lineshape of the SSBs.

4 Experimental Aspects

4.1 New Technique Developments. – It has been demonstrated that through-space recoupling can be achieved in dipolar coupled quadrupolar spins in the presence of an appropriate rf field. Experimental and theoretical results for ²³Na–²³Na pairs have been presented that elucidate the experimental conditions leading to homonuclear dipolar transfer. The effect of adiabatic amplitude modulation on spin-3/2 systems has been compared to spin-¹/₂ cases and applications of this approach in the context of HR MQ MAS for dipolar filtering and correlation have been discussed. Lithium spin-alignment spectroscopy has been presented as an NMR technique for studying slow translational motions in solid and solid-like ionic conductors. Phase cycling that allows to measure translational correlation functions *via* the generation of a pure quadrupolar ordered state has been used. Correlation functions of the crystal-line electrolyte Li₃Sc₂(PO₄)₃ have been recorded for times ranging from about 0.1 ms to more than 10 s, implying that translational diffusion coefficients smaller than 10⁻²⁰ m²/s become accessible.

The miscibility of two macroscopic phase separated polymers, a propylene-ethylene-diene terpolymer and an atactic polypropylene, has been investigated by a combination of several SSNMR techniques. Carbon-detected proton $T_{1\rho}(^1\mathrm{H})$ and $T_1(^1\mathrm{H})$ in systems conditioned by 2D heteronuclear WISE have been used. Both techniques are sensitive to spin diffusion between phases, with WISE being suited to making it stand apart from the basic relaxation process. These two techniques yield similar but different assessments of the presence and amount of phase separation present. An additional comparison has been made with differential scanning calorimetry and xenon NMR results, which also address this problem.

Three exchange NMR techniques have been presented that yield ¹³C NMR spectra exclusively of slowly reorienting segments, suppressing the often dominant signals of immobile components. 66 The first technique eliminates the diagonal ridge that usually dominates 2D exchange NMR spectra and that makes it hard to detect the broad and low off-diagonal exchange patterns. A modulation of the 2D exchange spectrum by the sine-square of a factor which is proportional to the difference between evolution and detection frequencies is generated by fixed additional evolution and detection periods of duration τ , yielding a 2D pure-exchange (PUREX) spectrum. Smooth off-diagonal intensity has been obtained by systematically incrementing τ and summing up the resulting spectra. The related second technique yields a static 1D spectrum selectively of the exchanging site(s), which can thus be identified. Efficient detection of previously almost unobservable slow motions in a semicrystalline polymer has been demonstrated. The third approach, a 1D pure-exchange experiment under MAS, is an extension of the exchange-induced sideband (EIS) method. A TOSS spectrum obtained after the same number of pulses and delays, with a simple swap of z periods, is subtracted from the EIS spectrum, leaving only the exchange-induced sidebands and a strong, easily detected centreband of the mobile site(s).

An NMR experiment has been presented which allows the relative orientation of nuclear quadrupole and dipole coupling tensors to be determined.⁶⁷ The experiment uses a 4I quantum filter to select dipolar-coupled spin I pairs, and the relative tensor orientations have been determined by lineshape analysis. It selects dipolar-coupled spin pairs, even in a multi-spin system, and leads to data which are straightforward to interpret. The same approach has been used to perform a 2D correlation experiment showing which spins are close in space.

When observing spin I = $^{1}/_{2}$ nuclei with important CSA in disordered materials, the distribution of isotropic shift can become so large that no accessible spinning rate is able to provide a resolved spectrum. This is the case of 207 Pb in glasses where static and high-speed MAS spectra are nearly identical. The possibility of rebuilding an SSB free spectrum using a shifted echo modified PASS sequence has been demonstrated. This makes it possible to discuss isotropic and anisotropic chemical shifts of lead in phosphate glasses, to characterise its structural role and its chemical bonding state.

DQ heteronuclear local field spectroscopy has been used to determine a molecular torsional angle in the *meta*rhodopsin-I, which is the 41 kDa integral membrane protein.⁶⁹ The result obtained is consistent with current models of the photo-induced conformational transitions in the chromophore.

Isotropic NMR spectra of half-integer quadrupolar nuclei using satellite transitions and MAS have been reported. ⁷⁰

A novel MQ MAS spin counting experiment based on the C7 recoupling sequence has been described.⁷¹ The new experiment is applicable at fast MAS rates and can be used to follow the MQ excitation dynamics with fine time resolution. It has been illustrated by experiments on adamantane at spinning speeds comparable to the nonspinning dipolar linewidth.

A new type of fast amplitude modulated pulse scheme has been presented that yields a significant sensitivity enhancement in the TQ MAS NMR spectrum of a spin-5/2 nucleus.⁷² Enhancement is achieved by fast phase alternation of the TQ-to-SQ conversion pulse, which transfers TQ-to-SQ coherence in a direct, non-adiabatic manner.

REDOR and θ -REDOR experiments for recovering the $^{13}C^{-2}H$ dipolar interaction during MAS NMR have been compared. The has been found that limited 2H rf power may severely compromise the performance of the REDOR experiment whereas the θ -REDOR experiment can be designed to work well. Results have been presented for an isolated $^{13}C^{-2}H$ spin pair with a large 2H QCC and for a ^{13}C coupled to three methyl deuterons undergoing fast methyl rotation.

New modified spectral editing methods for ¹³C CP MAS experiments for separating nonprotonated C and CH₃ peaks have been reported. ⁷⁴ Examples have been provided for 3-methylglutaric acid, fumaric acid monoethyl ester, and two complex natural products: methyl o-methylpodocarpate and 10-deacetylbaccatin III.

The 2D anisotropy-correlated NMR spectra of half-integer quadrupolar nuclei may be recorded by using an exchange sequence in conjunction with

MAS during evolution and detection, and off-MAS during mixing.⁷⁵ Application to boron oxides has been described, in addition to an analysis of the spin diffusion rates in such materials.

The use of double frequency sweeps (DFSs) consisting of two sidebands generated by a time-dependent amplitude modulation of the rf-carrier frequency has been demonstrated in NMR of spin 3/2 nuclei. ⁷⁶ This can be used for signal enhancement in both static and MAS spectra, as shown for a number of model compounds. DFSs prove to be efficient for the conversion of TQ-to-SQ coherence in MQ MAS spectroscopy. This relieves the rf-power requirements and as a result undistorted MQ MAS lineshapes are obtained (demonstrated for the four 23 Na resonances in Na₄P₂O₇).

A strategy of designing new heteronuclear broadband decoupling sequences for SSNMR has been presented. The new technique involves a phase modulation of the decoupler as a function that is a sum of several cosine terms (abbreviated as CPM m-n for cosine phase modulation with m harmonics and having frequency intervals of $\omega_{\rm rf}/n$, where m and n are integers). Experimental results show that their performances are considerably better than those of the existing decoupling methods, under conditions of moderate spinning rate and decoupling power.

The MQ MAS NMR experiment and a sensitivity enhanced variant detecting the SOQ powder pattern through a train of quadrupolar CPMG refocusing pulses have been analysed with respect to the effects of finite rf pulse irradiation and the MAS frequency. Taking these effects explicitly into account, it is possible to determine optimum conditions for excitation of MQ coherences and reconversion of these into detectable SQ coherences as well as simulate the SOQ lineshape necessary to extract quadrupolar parameters and isotropic chemical shifts. These are important for the exploitation of MQ MAS experiments for quantitative determination of site populations. The various effects have been described analytically and demonstrated by numerical simulations and by ⁸⁷Rb MQ and MQ CPMG MAS experiments on RbNO₃.

The MQ MAS has been used to evaluate the individual lineshape of the Al signals in the 1D 27 Al MAS NMR spectrum of zeolite materials. ⁷⁹ By the application of these real lineshapes, an improved deconvolution of the 1D MAS NMR spectrum has been achieved. This methodology has been applied to the two tetrahedrally coordinated Al sites in mazzite zeolite. Changes in the TQ CP matching profiles and 27 Al/ 23 Na SOQ lineshapes, have been observed as a function of the I = 1 / $_{2}$ rf field strength for both static and MAS conditions. ⁸⁰ It has been shown that only a fraction of the spins in the powder, with specific orientations of the EFG tensor, can match the Hartmann-Hahn condition at the same time, for a fixed I = 1 / $_{2}$ rf field strength.

Magnetic field gradients have proven useful in NMR for coherence pathway selection, diffusion studies, and imaging. Recently they have been combined with MAS to permit HR measurements of semi-solids, where MAS averages any residual dipolar couplings and local variations in the bulk magnetic susceptibility. First examples of coherence pathway selection by gradients in dipolar coupled solids have been presented. ⁸¹ It has been shown that when the

gradient evolution competes with dipolar evolution the experiment design must take into account both the strength of the dipolar couplings and the means to refocus it. Examples of both homonuclear and heteronuclear experiments have been shown in which gradients are used to eliminate the need for phase cycling. The target field method of designing gradient coils has been extended to the case where the gradient producing currents lie on cylinders of a general orientation with respect to the polarising magnetic field. This provides a general approach for designing coils that require unusual sample geometries such as those required for MAS applications. A detailed example of a magic angle gradient coil set has been presented.

One of the main problems in the performance of the MQ MAS experiment is the poor efficiency of the rf pulses used in converting MQ coherences to the observable SQ signals. As the MQ MAS is an echo experiment this problem can be related to the efficiency with which CW pulses can normally achieve the MQ-to-SQ conversion for different crystallites in a spinning powdered sample. An improved MQ MAS NMR experiment using amplitude modulated pulses has been reported. 83 These pulses were found to yield MQ MAS NMR signals that are 2-3 times stronger than the ones arising from the usual CW pulse schemes by virtue of a superior efficiency of the TQ-to-SQ conversion. Numerical simulations and experimental results for ²³Na and ⁸⁷Rb have been presented that corroborate the usefulness of the new approach. Various aspects involved in this MQ-to-SQ conversion have been investigated further, 84 in order to devise new experimental schemes that can lead to significant MQ MAS signal enhancements. A new MQ MAS experiment employing amplitude-modulated rf pulses and the mechanisms of operation of CW and of amplitude-modulated pulses have been examined. Experimental results highlighting the utility of this scheme in samples possessing multiple quadrupolar sites with varying quadrupolar anisotropies and chemical shift offsets have been demonstrated.

A pulse scheme for achieving HR ¹H NMR spectra in solids by coherent averaging of spin-spin interactions called phase-modulated LG has been reported.⁸⁵

Rotationally induced excitation of TQ coherences has been demonstrated for I = 5/2 nuclei from comparison of the variation of the observed and simulated lineshapes as a function of spin-lock time.⁸⁶ A new pulse sequence producing purely absorptive lineshapes has been reported. Rotation-induced 5Q←1Q coherence transfer (RIACT) for 5Q MAS NMR experiments has been reported for ¹⁷O for compounds with quadrupolar interactions in the range 3−7 MHz.⁸⁷ It has distinct advantages over the methods used to excite 5Q MAS NMR hitherto through much reduced sensitivity to the EFG. The 2D 5Q RIACT ¹⁷O spectrum of zeolite Na-A has been reported, which is better resolved than the higher field TQ spectrum.

A new technique for measurements of dipolar interactions in rotating solids has been presented that combines the capabilities of MQ MAS with the REDOR.⁸⁸ This new technique exhibits improved sensitivity toward weak dipolar interactions. WISE NMR with windowless isotropic mixing (WIM)

has been developed as a method to study the dynamics of polymers and blends. ⁸⁹ This experiment has been designed to measure the dynamics of polymers through the ¹H lineshapes that are correlated with the ¹³C chemical shifts in 2D NMR experiments. 2D WIM/WISE has been used to measure the main-chain and side-chain dynamics in poly(*n*-butyl methacrylate) and blends of polystyrene and poly(vinyl methyl ether).

A new pulse sequence for heteronuclear DQ MAS NMR spectroscopy of dipolar-coupled spin-¹/₂ nuclei has been introduced. ⁹⁰ The heteronuclear DQ SSB patterns produced by this experiment have been shown to be sensitive to the heteronuclear distance, as well as the relative orientations of the CS and dipolar tensors. The isolated ¹³C-¹H spin pair in deuterated ammonium formate with ¹³C in natural abundance has been chosen as a model system, and the perturbing influence of dipolar couplings to surrounding protons on the ¹³C-¹H DQ coherence has been discussed. The pulse sequence can also be used as a heteronuclear DQ filter, hence providing information about heteronuclear couplings, and thus allowing the differentiation of quaternary and CH bonded carbons.

A new heteronuclear chemical shift correlation technique of abundant spins (e.g. ¹H) with rare spins (e.g. ¹³C) has been reported. ⁹¹ HR is provided by ultra-fast MAS and high magnetic fields, high sensitivity being ensured by a direct polarisation transfer from the abundant protons to ¹³C. In a rotor-synchronised variant, the method can be used to probe heteronuclear through-space proximities, while the heteronuclear dipolar coupling constant can quantitatively be determined by measuring MQ SSB patterns. By means of recoupling, even weak heteronuclear dipolar interactions are accessible. The capabilities of the technique have been demonstrated by measurements on crystalline L-tyrosine hydrochloride salt.

¹³C ZQ MAS NMR spectroscopy for paramagnetic solids has been proposed to obtain both highly resolved isotropic peaks and accurate values of shift anisotropies by removing line broadening due to bulk magnetic susceptibility (BMS) shifts. ⁹² Several pulse sequences for ZQ NMR experiments under fast MAS have been presented which are based on homonuclear J couplings between a pair of ¹³C spins. For determining paramagnetic shift anisotropies, ZQ SSB (SSB) patterns have been observed which are free from the distortion due to the BMS shifts. To enhance ZQ SSB intensities, a π pulse was inserted during the t_1 period of 2D experiments. A selective excitation scheme has also been developed which leads to the improvement of the SNR of ZQ NMR spectra.

The 2D PASS experiment is a useful technique for simplifying MAS NMR spectra that contain overlapping or complicated SSB manifolds. The pulse sequence separates SSBs by their order in a 2D experiment. The result is an isotropic/anisotropic correlation experiment, in which a sheared projection of the 2D spectrum effectively yields an isotropic spectrum with no SSBs. The original 2D PASS experiment works best at lower MAS speeds (1–5 kHz). At higher spinning speeds (8–12 kHz) the experiment requires higher rf power levels so that the pulses do not overlap. In the case of nuclei such as ²⁰⁷Pb, a

large CSA often yields too many SSBs to be handled by a reasonable 2D PASS experiment unless higher spinning speeds are used. Performing the experiment at these speeds requires fewer 2D rows and a correspondingly shorter experimental time. New PASS pulse sequences have been implemented that occupy multiple MAS rotor cycles, thereby avoiding pulse overlap. A version of the multiple-rotor-cycle 2D PASS sequence that uses composite pulses to suppress spectral artifacts has also been presented. These sequences have been demonstrated on ²⁰⁷Pb test samples, including lead zirconate, a perovskite-phase compound.

Different approaches to obtain pure absorption-mode lineshapes in MQ MAS experiments employing a train of π phase-alternating pulses for the MQ-to-SQ mixing period have been investigated. Four pulse sequences have been presented and their improved performance has been experimentally demonstrated by 87 Rb MQ MAS of RbNO₃.

A simplified method for acquiring pure-phase 2D exchange spectra under slow MAS has been introduced. It combines rotor-synchronised 2D exchange spectroscopy with whole-echo acquisition leading to a simplification in data acquisition and processing. 95 The proposed method is applicable to samples where an echo of the FID can be obtained, i.e., where the inhomogenous linewidth is larger than the homogeneous linewidth. This is the case in rarespin spectroscopy of samples with natural isotopic abundance. The usefulness of the new method has been demonstrated, using ¹³C spectroscopy. Layered paramagnetic compounds, such as La₂Li_{0.5}Ni_{0.5}O₄ with a perovskite structure, the ⁷Li NMR spectrum is broadened by anisotropic quadrupolar as well as paramagnetic dipolar interactions. A 2D spin echo (SE) experiment to separate the quadrupolar interaction and obtain a clean quadrupolar spectrum along the w₁ dimension has been suggested. 96 This has been demonstrated through 2D SE experiments conducted in static samples as well as those in spinning at the magic angle. A quadrupole coupling constant of 92 kHz has been estimated for paramagnetic La₂Li_{0.5}Ni_{0.5}O₄. It has been shown that the same information may be obtained from the C-H dipolar couplings using 2D experiments correlating ¹³C chemical shifts and H-C dipolar couplings. ⁹⁷ The order parameters of C₄–H_a and C₄–H_e vectors calculated from this experiment are in agreement with those previously determined on the same sample from ²H NMR. This experiment opens the way to the simultaneous determination of order parameters of all C-H vectors without the need of specific labelling.

New 1D, 2D and 3D SSNMR spectroscopic methods designed for structural studies of uniformly ¹⁵N- and ¹³C-labeled peptides and proteins in oriented samples have been described. ⁹⁸ These methods provide a means of obtaining resolved spectra, sequential resonance assignments, and structural constraints. Experimental results for model single-crystal peptides and amino acids demonstrate that HR 1D ¹³C spectra can be obtained for signals from carbonyl or carboxyl carbons in uniformly labelled samples by applying phase-modulated selective homonuclear (PSH) decoupling at aliphatic carbon resonances, in addition to heteronuclear proton and ¹⁵N decoupling. ¹³C-detected 2D ¹⁵N/¹³C chemical shift correlation spectroscopy has been made possible by a

combination of PSH decoupling and broadband heteronuclear polarisation transfer sequences such as WALTZ-5 CP. Experimental 2D spectra of uniformly ¹⁵N- and ¹³C-labelled AlaGlyGly crystals show that resolution and sequential assignment of (CO)-¹³C and ¹⁵N NMR signals is possible. Comparisons of experimental spectra and simulations verify the assignments and the accuracy of structural information contained in the 2D spectra in the form of the orientation-dependent (CO)-¹³C and ¹⁵N chemical shifts. ¹³C-detected 3D spectroscopy has also been demonstrated by adding a ¹H-¹⁵N dipolar dimension to the 2D methods. Results of experiments at fields of 9.39 and 17.6 T have been reported.

Enhancement of sensitivity in ¹⁵N NMR by indirect detection through ¹H NMR signals under high-speed MAS and high-field conditions has been demonstrated experimentally on two ¹⁵N-labelled peptides, polycrystalline AlaGlyGly and the helix-forming 17-residue peptide. ⁹⁹ Sensitivity enhancement factors ranging from 2.0 to 3.2 have been observed experimentally, depending on the ¹⁵N and ¹H linewidths and polarisation transfer efficiencies. The ¹H-detected 2D ¹H/¹⁵N correlation spectrum of AlaGlyGly illustrates the possibility of increased spectral resolution and resonance assignments in indirectly detected experiments, in addition to the sensitivity enhancement.

A procedure for structural characterisation based on XRD and on a set of 2D SSNMR experiments has been proposed. ¹⁰⁰ It has been applied to a new gallophosphate oxyfluorinated compound. A set of three NMR experiments – RFDR for ¹⁹F, DQ for ³¹P and HETCOR between ¹⁹F and ³¹P – facilitate the analysis of the topology of homoatomic and heteroatomic sub-networks of fluorine and phosphorus included in the inorganic framework of this material. The efficiency of this combination of NMR experiments in assigning all NMR signals to their crystallographically sites has also been demonstrated.

4.2. NMR Parameters: Experimental and Quantum Mechanical Studies. – 4.2.1 Spin-¹/₂ Nuclei: Isotropic Shifts and CS Tensors. ¹ – Determination of ¹H CS tensors is crucial for protein structure determination by SSNMR. The ¹H chemical shift is particularly important in spectra obtained on oriented samples of membrane proteins as a mechanism for providing dispersion among resonances that are not resolved with the ¹H-¹⁵N dipolar coupling and ¹⁵N chemical shift frequencies. This has been demonstrated with 3D experiments on uniformly ¹⁵N-labeled samples of Magainin antibiotic peptide and the protein Vpu from HIV-1 in oriented lipid bilayers. ¹⁰¹ These experiments enable resonances in 2D ¹H-¹⁵N dipolar coupling/¹⁵N chemical shift planes separated by ¹H chemical shift frequencies to be resolved and analysed.

It has been shown that the magnitude and absolute orientation of ¹H CS tensors may be determined from polycrystalline powders using CRAMPS by simultaneous evolution under CS and heteronuclear dipolar coupling interactions. ¹⁰² An experimental approach based on the broadband high-order truncating MSHOT-3 homonuclear decoupling sequence has been demonstrated for the H-bonded proton within the ³¹P-¹H-³¹P three-spin systems of a powder of KH₂PO₄.

 ^{13}C – The polymorphic structures of silk fibroins in the solid state were examined on the basis of a quantitative relationship between the ^{13}C chemical shift and local structure in proteins. 103 To determine this relationship, ^{13}C chemical shift contour plots for C_{α} and C_{β} of Ala and Ser residues, and the C_{α} chemical shift plot for Gly residues were prepared using atomic coordinates from the Protein Data Bank and ^{13}C NMR chemical shift data reported for 40 proteins.

Possibilities and limitations of iterative lineshape fitting approaches for the complete determination of magnitudes and orientations of NMR interaction tensors in a four-13C-spin system from MAS NMR experiments have been investigated. 104 The model compound chosen for this investigation is the monoammonium salt of maleic acid. Various selectively and fully ¹³C-labelled versions of this compound permit a stepwise reduction of the number of unknown parameters, necessary to fully describe the four-13C -spin system in the uniformly ¹³C-labelled maleate moiety. It has been demonstrated that assumptions about 'typical' CS tensor orientations, even if not deviating much from the real orientations, lead to severe errors in internuclear distance determinations. The principal values of the ¹³C CS tensors were measured for coronene and corannulene, both at room temperature and at approximately 100 K. 105 A comparison of the principal values between the room temperature motionally averaged pattern and the low-temperature static pattern provides information about the orientation of the principal axis system of the CS tensor for the bridgehead carbons in these molecules. The results show that the motion is not constrained to simple in-plane rotation, but must also have an out-of-plane component. Quantum chemical calculations of the CS tensors were also completed using both experimental and optimised molecular geometries.

set of mainly ionic fluoride compounds (from simple metal fluorides to transition metal fluoride glasses) obtained by MAS NMR at 15 kHz have been investigated. First, Ramsey's theory of die chemical shift with MOs obtained by Lodwin's orthogonalisation method has been used to evaluate the isotropic part of the ¹⁹F chemical shift in ionic fluorides for which the crystallographic structure and the atomic radial wavefunctions are known. Assuming that the paramagnetic part of the ¹⁹F shielding in a given material is simply the summation of the paramagnetic contributions due to all the cations in the neighbourhood of the considered fluorine, a superposition model of the ¹⁹F isotropic chemical shift has been developed. This empirical approach has been applied to complex fluoride compounds of unknown structure and it has been shown that it allows to obtain reliable structural informations.

The sensitivity of the 19 F isotropic chemical shift to the environment of the fluorine atom has been used to investigate transition metal fluoride glass networks. 107 From the chemical shift values, it has been shown that three F sites can be identified shared and unshared Fs between two MF₆ octahedra and free Fs which are not implied in these MF₆ octahedra. The proportions of these different fluorines in the glasses have been obtained and the connectivity

of the MF₆, octahedra which constitute the networks has been deduced. It has been shown that the structure of the alkali fluoride glasses is quite different from the other fluoride glasses.

³¹P - Local structure of phospholipid/amine polyion complexes in lyophilised powders of dipalmitoylphosphatidic acid/poly-L-lysine and DPPA/poly-L-arginine has been investigated. The intermolecular interactions in the polyion complexes were detected by ³¹P-¹H HETCOR. The complete information about the ³¹P CS tensor components and the mutual orientation of CS tensor with respect to a molecular fixed frame was determined by both CP MAS and spin-echo separated local field measurements. From the *ab initio* ³¹P CS calculation, the behaviour of the principal components of ³¹P CS tensor in the phosphate group in DPPA has been found to be dominated by a change in the electronic state in association with phosphate/amine complexation.

The ³¹P CS surface of phosphinoborane R₂PBR₂′ has been investigated *via* MO calculations and experimental measurements. ¹⁰⁹ Ab initio calculations of ³¹P CS tensors were determined for the phosphinoboranes H₂PBH₂ and Me₂PBMe₂. Changes in the angle from planarity, *i.e.* that between the P–BR₂′ plane and the bisector of the RPR angle, are reflected in the orientations and magnitudes of the three principal components of the ³¹P CS tensor. To determine the validity of the calculated ³¹P CS surface, three phosphinoborane compounds with different angles from planarity were studied by ³¹P SSNMR spectroscopy. The experimental magnitudes of the principal components and orientations of the ³¹P CS tensor compared well to the calculated predictions. The combined experimental and theoretical results provide a good description of the effects on changes in bond angle on ³¹P CS as the molecule is distorted from a planar to folded geometry.

31P 1D NMR spectra of a stationary powder sample of a phosphole tetramer containing two phosphorus spin pairs have been obtained at 4.7 T and 9.4 T.¹¹⁰ In order to separate ³¹P–³¹P spin–spin coupling from anisotropic CS, 2D spin-echo NMR spectra have been acquired. ³¹P CP MAS NMR experiments indicate that the two spin pairs of the tetramer are equivalent and each may be treated as an isolated spin pair. Within a given spin pair, the difference between the isotropic chemical shifts of two directly bonded ³¹P nuclei is 1.7 ppm. They are spin–spin coupled by both the indirect ($^1J = -362$ Hz) and direct interactions (1.80 kHz). The principal components and relative orientation of the two ³¹P CS tensors have been determined using the dipolar-chemical shift technique. Ambiguities in the CS tensor orientation relative to the molecular framework have been resolved using *ab initio* calculations and simulations of the 2D spin-echo spectra. The spans and skews of the ³¹P CS tensors for all 4 three-coordinate ³¹P nuclei are the same within experimental error, 115 ppm and 0.70, respectively.

³¹P CS and spin–spin coupling tensors have been characterised for tetramethyldiphosphine disulfide (TMPS) by analysis of ³¹P CP NMR spectra obtained for a single crystal and powder samples have been acquired at 4.7 and 9.4 T.¹¹¹ A 2D spin-echo NMR spectrum was obtained to independently determine the effective ³¹P–³¹P dipolar coupling constant. The subtle difference

between two particular inequivalent phosphorus sites in TMPS were examined using ³¹P CS tensors obtained from both single-crystal and dipolar-chemical shift NMR methods.

 ^{109}Ag - It has been shown that ^{109}Ag NMR signals in $Ag_xCu_{1-x}I$ crystals are shifted to a low field relative to that in solid AgI with decreasing the unit cell constant analogous to ^{63}Cu MAS NMR signals. 112 The observed chemical shieldings were analysed using *ab initio* calculations of ^{109}Ag and ^{63}Cu CS tensors for tetrahedral AgI_4^{3-} and CuI_4^{3-} ions.

¹¹⁹Sn - The effects of powder granule size on parameters such as chemical shift, linewidth, and spin-lattice relaxation have been studied using ¹¹⁹Sn MAS NMR of SnO₂ powders. ¹¹³ Linewidth showed a general broadening as size decreased, but there was evidence in the anisotropy of the chemical shift and in the spin-lattice relaxation.

 199 Hg - The 199 Hg MAS NMR spectra of Hg₂X₂ (X = Cl, SCN, NCO, CH₃CO₂, CF₃CO₂) have been reported. SSB analysis has been used to determine the 199 Hg CS parameters, $\Delta\sigma$ and η . In contrast to the case of the corresponding Hg(II) compounds, the shielding anisotropy has been found to be relatively insensitive to the nature of the X group. This is consistent with the view that the electronic environment of the Hg atom in the Hg(I) compounds is dominated by the Hg–Hg bond. The changes in the 199 Hg CS parameters from the Hg(II) to the corresponding Hg(I) compounds, as well as the changes in these parameters in the Hg(I) compounds with changes in X, can be interpreted as variations in the local paramagnetic contribution to the CS tensor.

 ^{207}Pb - The isotropic chemical shift of ^{207}Pb has been used to perform structural investigations of crystalline fluoride compounds and transition metal fluoride glasses. 115

Using ^{207}Pb CP MAS with ^{19}F decoupling, it has been shown that the $\delta_{iso}(^{207}\text{Pb})$ varies on a large scale (1000 ppm) and that the main changes of its value are not due to the nearest neighbour fluorines but may be related to the number of next nearest neighbour Pb $^{2+}$ ions. $\alpha\text{-PbO}$ and $\beta\text{-PbO}$ have been studied with ^{207}Pb MAS NMR. 116 The ^{207}Pb NMR CS tensor in $\alpha\text{-PbO}$ is axial, with $\delta_{\perp}=3030$ and $\delta_{\parallel}=-270$ ppm. In $\beta\text{-PbO}$, the ^{207}Pb NMR powder spectrum has been represented by a single non-axial tensor with $\delta_{11}=2820,\,\delta_{22}=2760$ and $\delta_{33}=-1000.$ Using normal-coordinate analysis, the ^{207}Pb CS tensor has been represented as a sum of contributions from separate Pb–O and Pb–Pb interactions. It has been shown that Pb–O and Pb–Pb contributions are of the same order of magnitude. Pb $_3\text{O}_4$ has been studied with ^{207}Pb NMR. 117 The ^{207}Pb CS tensor of the Pb $^{2+}$ site has principal values of $\delta_{11}=1980,\,\delta_{22}=1540$ and $\delta_{33}=1108$ ppm. The CS tensor of the Pb $^{4+}$ site is axial, with principal values $\delta_{\parallel}=1009$ ppm and $\delta_{\perp}=1132$ ppm. The Pb $^{4+}$ -Pb $^{2+}$ spin–spin coupling constant is 2.3 kHz.

207Pb NMR powder pattern analysis has been applied to several lead-containing inorganic and organic compounds. The CS tensors obtained are less susceptible to systematic error than earlier studies employing MAS SSB analysis. Since the lead atom is very sensitive to its local environment, a

correlation between the chemical shift and structure was investigated. An increase in Pb–O interatomic distance tends to shift the isotropic chemical shift to lower frequency, whereas conversely an increase in Pb–halogen interatomic distance tends to increase the chemical shift. As a consequence of the electronic structure of Pb²⁺, almost all ²⁰⁷Pb shielding tensors of Pb²⁺ species have a negative anisotropy.

negative anisotropy.

Static and MAS ²⁰⁷Pb NMR spectra of a series of lead oxides, including various electronic materials have been reported. ¹¹⁹ The chemical shift parameters and the spin–lattice relaxation times have been determined. The symmetry of the local environment of the Pb(II) site and the covalency of the Pb–O bonds have been determined to be the best indicators of the ²⁰⁷Pb chemical shift parameters.

4.2.2 Quadrupolar Nuclei: Isotropic Shifts, CS and EFG Tensors. ^{6,7}Li – Two nitrogen ceramic phases, the oxynitride LiSiON and the nitride LiSi₂N₃, have been studied by ^{6,7}Li MAS at 7 and 14 T.¹²⁰ The EFG tensor of both phases has been determined by iterative fitting of the ^{6,7}Li lineshapes at the two field strengths. Due to the fact that for ⁷Li the quadrupolar interaction is much larger than the chemical shift interaction, it has been shown that neither the small CSA nor the relative orientation of the two interaction tensors can be determined accurately by ⁷Li MAS NMR. For ⁶Li, the two interactions are comparable and the value of these parameters obtained from the fits of the ⁶Li experimental MAS lineshapes are therefore much more reliable.

 6,7 Li MAS NMR has been used to investigate the local coordination environment of Li in a series of $x\text{Li}_2\text{O}\cdot(1-x)\text{P}_2\text{O}_5$ glasses. Both the ^6Li and ^7Li show chemical shift variations with changes in the Li₂O concentration, but the observed ^6Li NMR chemical shifts closely approximate the true isotropic chemical shift and can provide a measure of the lithium bonding environment. The ^6Li NMR results indicate that, in this series of lithium phosphate glasses, the Li atoms have an average coordination between four and five. An increase in the ^6Li NMR chemical shift with increasing Li₂O correlates with increased cross-linking of the phosphate tetrahedral network by O–Li–O bridges.

 9Be - Despite the favourable NMR properties of 9Be (I = 3/2), NMR spectroscopy of this nucleus in the solid state remains comparatively unexplored. 122 An integrated experimental and theoretical study of the Be CS and EFG tensors in bis(2,4-pentanedionato-O,O') beryllium [Be(acac)₂] has been presented. Interpretation of the 9Be NMR data was facilitated by XRD results, which indicate two crystallographically unique sites. 9Be NMR spectra acquired at 4.7 and 9.4 T for MAS and stationary samples have been fitted in order to extract the QCC (χ), asymmetry parameter (η), and isotropic chemical shift (δ_{iso}). The best-fit quadrupole parameters for the two sites were determined to be $\chi(1) = -294$ kHz, $\eta(1) = 0.11$; $\chi(2) = -300$ kHz, $\eta(2) = 0.15$. Analyses of the stationary samples also reveal a definite anisotropy in the beryllium CS tensor and allow to place upper and lower limits on the spans of 7 and 3 ppm. This is the first evidence for anisotropic shielding in beryllium. *Ab initio* calculations of the 9Be CS tensors in Be(acac)₂ indicate spans ranging

from 7 to 9 ppm; this represents a substantial fraction of the total known chemical shift range for ⁹Be (<50 ppm). Calculations of the beryllium CS tensors for a series of compounds encompassing the known range of ⁹Be chemical shifts have also been presented. The calculations are in accord with experimental data from the literature. On the basis of calculations for linear molecules, it has been shown that the assumption that the ⁹Be chemical shift is governed essentially by the diamagnetic term is erroneous. For some of these molecules, the calculated Be CS tensor spans are greater than the total known chemical shift range.

¹⁷O - NMR determinations of the ¹⁷O CS and EFG tensors for a series of ¹⁷O-enriched organic compounds containing various functional groups have been reported. ¹²³ In several cases, analysis of the ¹⁷O MAS and static NMR spectra yields both the magnitude and relative orientations of the ¹⁷O CS and EFG tensors.

The feasibility of ¹⁷O SSNMR as a potentially useful technique for studying molecular structure and H-bonding has been demonstrated. ¹⁷O NMR parameters (χ , η , $\delta_{\rm iso}$ and $T_{\rm l}$) have been reported for both Si–O–Si and Si–OH fragments within a silica gel. ¹²⁴ The Si–OH units have a wide spread of parameters but are typically characterised by a very short $T_{\rm l}$ (\sim 0.1 ms) and χ < 200 kHz. These observations have important implications for the quantification of such units in these gels and related glassy materials.

The static, MAS and MQ ^{17}O NMR experiments have been optimised to observe a distinct resonance from the OH group. The ^{17}O NMR spectra of L-alanine-residue containing polypeptides were measured by MAS at 25 kHz. 125 NMR parameters such as $\chi,~\eta$ and δ_{iso} have been obtained from the spectra. The relationship between the H-bonded structure and these NMR parameters has been clarified. The H-bonding structures have been related to the χ and δ_{iso} values.

 ^{23}Na - The ^{23}Na MAS, DOR and MQ MAS MR spectra of Na₄P₂O₇, measured at five different Larmor frequencies (v_L) ranging from 105.8 MHz to 211.6 MHz have been analysed and the complete set of NMR parameters (χ , η and δ_{iso}) of the four crystallographically inequivalent Na sites were determined with high accuracy. ¹²⁶ Different approaches of spectra evaluation have been discussed and their results have been compared. It has been shown that Na₄P₂O₇ may serve as a useful reference material for experimental set-up and reliability tests of the various NMR experiments.

Ag-impurity effects on the first- and second-order quadrupole interaction at 23 Na site in an isomorphic mixed system, Na_{1-x}Ag_xNO₂ (x = 0, 0.0084, 0.026, 0.079, 0.094, 0.16), have been investigated by employing 23 Na MAS NMR. 127 The quadrupole parameter and its distribution width have been obtained as a function of Ag concentration.

The QCC (χ) and the spin–lattice relaxation rate (1/ T_1) of ²³Na NMR in the NaNO₂ powder have been investigated by employing MAS and wideline probes at 9.4 T in the range of 300–458K. ¹²⁸ The linearity between χ and the squared spontaneous polarisation was obeyed up to near the critical temperature ($T_c = 437$ K), which is consistent with the previous reports. The

reorientational motion of NO_2^- ion in powder samples has been found to have an activation energy, $\Lambda U = 0.22$ eV, which is in good agreement with the value obtained with single crystals.

²⁷Al - The well-characterised minerals kyanite and andalusite have long presented great challenges in using 27 Al NMR to determine the χ , η and δ_{iso} values for each of the inequivalent Al sites in these minerals. Recent advances in magnet technology (up to 18.8 T) and in MAS probe technology (spinning up to 35 kHz and considerably stronger rf) and refinements of the 2D MQ MAS technique suggested that these developments could be used to study kyanite and andalusite. The benefit of being able to study kyanite both by MAS and MQ MAS techniques on 400, 500 and 800 MHz spectrometers has been demonstrated. 129 The two octahedral Al with the largest (and nearly equal) χ values give overlapping 1D MAS or 2D TQ MAS signals at all three field strengths. Nevertheless, quantitatively accurate 34 signal intensities at 9.4 T for all four octahedral Al sites (with χ values up to 10 MHz) allow more detailed analysis. For andalusite, 34 kHz MAS on the 800 MHz spectrometer significantly narrows the extremely broad signal for the octahedral aluminum, and only slight difficulties have been encountered in quantitating the relative amounts of AlO₅ and AlO₆ present. Even with $\chi = 15.3$ MHz, the octahedral Al in andalusite gives a signal in a MQ MAS experiment. Some of the benefits and limitations of these advances in instrumentation and of different experimental approaches for studying non-integral spin quadrupolar nuclei in solids have been discussed.

The chemical shift tensor has been measured for the five- and six-coordinate sites in andalusite, $Al_2SiO_5.^{130}$ The experimental results agree well with those calculated by the full-crystal density functional theory, differing by only 0.17° for the six-coordinate site and 1.56° for the five-coordinate site. The calculated value of χ is in error by -0.254 MHz for the five-coordinate site. The embedded cluster MO results are significantly less accurate, with orientation errors exceeding $45^\circ.^{27}Al$ satellite transition NMR spectroscopy has been used to probe the quadrupolar interaction of NaA, NaX and NaLSX (low silica X) zeolites. 131 The χ and η values have been obtained by computer simulations of the SSBs. These parameters represent the local electronic environments around the Al and have been used for structural correlations.

 35,37 Cl- Values of χ , η and δ_{iso} have been determined for a series of inorganic perchlorates from 35 Cl MAS NMR spectra at 14.1 T. 132 Illustrative 37 Cl MAS NMR spectra have been obtained and analysed for some of the samples. For perchlorate anions with χ < 1 MHz, the 35,37 Cl NMR parameters are most precisely determined from the full manifold of SSBs observed for the satellite transitions while lineshape analysis of the central transition has been employed for the somewhat larger χ values. The environments for the individual perchlorate anions are best characterised by the quadrupole coupling parameters (*e.g.* χ ranges from 0.3 to 3.0 MHz), while the dispersion in the isotropic 35 Cl chemical shifts is small (1029 ppm < δ_{iso} < 1049 ppm). Due to the variation in quadrupole coupling parameters, 35 Cl MAS NMR may be employed for identification of anhydrous and hydrated phases of perchlorates,

in studies of phase transitions, hydration reactions, and the composition of mixed phases. The ³⁵Cl MAS NMR spectra of LiClO₄, Mg(ClO₄)₂ and Ba(ClO₄)₂, for which the crystal structures are unknown, reveal that each of these salts possesses a single perchlorate site in the asymmetric unit; the ³⁵Cl NMR data for Mg(ClO₄)₂ and Ba(ClO₄)₂ suggest that they are isostructural.

⁵¹V - Static and MAS ⁵¹V NMR spectra of BiVO4 were recorded at three different held strengths (2.3, 9.4 and 14.1 T) and give evidence of the relative effects of the quadrupolar interaction and electronic shielding at the nucleus. ¹³³ The experimental powder spectra were fitted to ascertain both the magnitude and orientation of CS and EFG tensors.

⁵¹V EFG and CS tensors have been determined from for nine divalent metal metavanadates. ¹³⁴ The manifold of SSBs from the central and satellite transitions, observed in the ⁵¹V MAS NMR spectra have been analysed using least-squares fitting and numerical error analysis. This has led to a precise determination of the eight NMR parameters characterising the magnitudes and relative orientations of the EFG and CS tensors. The optimised data demonstrates that different types of *meta*vanadates can easily be distinguished by their anisotropic NMR parameters. The CS parameters for orthovanadates and mono- and di-valent metal *meta*vanadates have been compared.

 $^{63,65}Cu$ - Direct NMR observation of $^{63,65}Cu$ in solid K₃Cu(CN)₄ provides the first experimental example of anisotropic copper CS. 135 Axially symmetric by virtue of the space group symmetry, the CS tensor spans 42 ppm, with the greatest shielding when the unique axis is perpendicular to the applied magnetic field. The nuclear quadrupole coupling constant is also appreciable, $\chi(^{63}Cu) = -1.125$ MHz, reflecting a deviation of the Cu(CN)₄³⁻ anion from pure tetrahedral symmetry. Spin-spin coupling to 13 C nuclei in an isotopically enriched sample has been quantified by lineshape simulations of both 13 C and 63,65 Cu MAS spectra to be 300 Hz. It has been shown that this information is also directly available by 63,65 Cu TQ MAS NMR. Spin-spin couplings $^{2}J(^{63,65}$ Cu, 15 N) detected in 15 N MAS experiments have been found to be 19 and 20 Hz for the two crystallographically distinct cyanide ligands.

 ^{67}Zn - A ^{67}Zn NMR study of compounds containing zinc ions coordinated by oxygen, nitrogen and sulfur ligands have been reported. New information concerning ^{67}Zn quadrupole coupling constants and chemical shifts has been obtained from MAS spectra of solid compounds.

^{69/71}Ga - Owing to the implementation of acquisition techniques specific for nuclei with very large quadrupolar interaction, NMR spectra of ⁶⁹Ga and ⁷¹Ga have been obtained in crystallised and glassy gallium fluorides. ¹³⁷ Simulations of both static and MAS spectra allow to obtain consistent determinations of isotropic chemical shifts and very large quadrupolar parameters (up to 14 MHz). In the crystalline compounds whose structures are unknown, the number and the local symmetry of the different gallium sites are tentatively worked out. For the glassy systems, a continuous Czjzek's distribution of the NMR quadrupolar parameters accounts for the particular shape of the NMR spectrum. New measurements of NMR parameters for ⁷¹Ga in gallium bearing oxide reference compounds, ranging from perfectly ordered

systems to disordered crystalline structures and their aluminate counterparts have been reported. Static, MAS and QPASS spectra have been obtained at magnetic fields ranging from 7.0 to 18.8 T. The new results enhance the previously established correlation between $\delta_{iso}(^{71}\text{Ga})$ and $\delta_{iso}(^{27}\text{Al})$. A correlation between ^{71}Ga and ^{27}Al EFGs has been proposed. This correlation shows that the EFG at ^{71}Ga sites are generally three times greater than those at equivalent ^{27}Al sites.

⁸⁷Rb - A remarkable sensitivity of the ⁸⁷Rb nucleus to its physical environment in alkali metal halides has been reported. ¹³⁹ When Rb⁺ is incorporated into different cubic halide lattices at very low concentrations, the ⁸⁷Rb NMR chemical shift becomes more shielded by as much as 282 ppm when the cation is changed from Na⁺ to Cs⁺. Similarly, in mixed crystals of KCl and RbCl, the average resonance frequency shifts with the degree of incorporation. The ⁸⁷Rb chemical shift data for each halide show a near-linear correlation with the average alkali metal-halide interionic distance in the different crystals studied, in good agreement with ab initio calculations which show that indeed the chemical shielding has a strong dependence on the nearest neighbor shell of halide anions and their distance from the Rb^+ . Temperature dependencies of χ , η and δ_{iso} have been observed for RbCl, RbClO₄, Rb₂SO₄ and RbNO₃ by ⁸⁷Rb MAS NMR in the temperature range $-100-\pm165\,^{\circ}\text{C}.^{140}$ The results demonstrate that χ (^{87}Rb) and $\delta_{iso}(^{87}Rb)$ are highly temperature-dependent for all samples. Linear correlations of $\delta_{iso}(^{87}Rb)$ with temperature have been observed. ⁸⁷Rb NMR spectra for a powder and single crystal of RbVO₃ have been acquired for the central transition at two magnetic field strengths (9.4 and 14.1 T). ¹⁴¹ The powder spectra have been obtained using spin-echo techniques without sample spinning because the widths of the spectra are in the range 100-150 kHz, The spectra have been analysed in terms of the CS and EFG tensors. Parameters of high precision including the relative orientation for the two tensors have been obtained from the single-crystal spectra at 14.1 T. Finally, the orientations of the two tensors in the crystal frame have been deduced from the crystal symmetry and an XRD analysis.

 ^{95}Mo - The Chevrel-phase pseudo-binary solid solution Mo₆Se₈–Mo₆Te₈ has been studied by 95 Mo NMR. 142 The experimental spectra were fitted by an anisotropic central line of axial symmetry corresponding to the Mo atoms of the Mo₆ metallic cluster. Quadrupolar effects due to the chalcogen network were neglected since the shape and width of the resonant line $(+^{1}/_{2} \rightarrow -^{1}/_{2}$ transition) have been shown to be independent of the chalcogen substitution. The Knight shift varies linearly with the Se/Te ratio and it was found to be proportional to the room-temperature susceptibility, implying the existence of polarisation mechanisms between d and s electron spins.

4.2.3 Multinuclear Studies. The principal components of the ¹³C, ¹⁵N and ⁷⁷Se CS tensors for several solid selenocyanate salts have been determined. ¹⁴³ Within experimental error, all three CS tensors are axially symmetric, consistent with the expected linear geometry of these anions. The spans of the ¹³C and ⁷⁷Se CS tensors for the SeCN⁻ anion are approximately 300 and 800 ppm,

respectively, much less than the corresponding values for CSe₂. This difference is a consequence of the difference in the CS tensor components perpendicular to the C infiniti symmetry axes in these systems. Ab initio calculations show that the orbital symmetries of these compounds are a significant factor in the shielding. For CSe₂, efficient mixing of the σ and π orbitals results in a large paramagnetic contribution to the total shielding of the CS tensor components perpendicular to the molecular axis. Such mixing is less efficient for the SeCN $^-$, resulting in a smaller paramagnetic contribution and hence in greater shielding in directions perpendicular to the molecular axis.

⁷⁷Se and ¹³C CP MAS experiments have been employed to study the structure and dynamics of DL-selenomethionine and L-selenomethionine in the solid state. 144 The 77Se principal elements of CS tensors for both compounds were calculated by means of the graphical method of Herzfeld and Berger. From ⁷⁷Se and ¹³C NMR it has been concluded that the unit cell of Lselenomethionine contains two molecules and it is isomorphous with Lmethionine. The results of first principles Hartree-Fock (HF) and DFT calculations on the ¹H, ²⁹Si and ¹⁷O NMR chemical shifts of hydroxyl groups in silica have been reported. 145 Quantitative agreement with the available experimental data has been obtained at the DFT level. The CP SSMAS ²⁹Si, ¹¹⁹Sn and ²⁰⁷Pb NMR spectra of (Ph₃E)Mn(CO)₅ (E = Si, Sn, Pb), have been analysed to give the chemical shifts, ¹J(E-Mn) couplings, the 'effective-dipolar' coupling constants (D- $\Delta J/3$), the CS tensors, and the spin-spin anisotropy (ΔJ) . ¹⁴⁶ For the Sn and Pb compounds, three and four sets of chemical shifts, respectively, were observed, and two different polymorphs occur for the Pb complex. The average values of the reduced coupling constants, ${}^{1}K(Mn-E)$ showed a linear correlation with the s-electron densities at the respective metal nuclei. The principal components of the CS tensors have been determined for the tin and lead compounds.

The two anhydrous polymorphs of Na₅P₃O₁₀ have been characterised by ²³Na and ³¹P MAS NMR spectroscopy. ¹⁴⁷ The ²³Na MQ MAS spectrum of the low-temperature form (phase II) displays three resonances for which the quadrupole coupling parameters and isotropic chemical shifts have been determined. Discrepancies between recently reported ²³Na MQ MAS spectra of this phase and the crystal structure have been clarified. The ²³Na resonances observed for the low-temperature form have been assigned to the crystallographically inequivalent Na sites in the crystal structure using point-monopole calculations of the EFG tensors. Three ²³Na resonances have also been observed for the high-temperature form (phase I), with two signals having very similar quadrupolar couplings and isotropic chemical shifts indicating similar coordination environments for the corresponding Na sites, in disagreement with the reported single-crystal structure. Point-monopole calculations of the EFG tensors based on the crystal structure fail to reproduce the experimental values. The ³¹P CS anisotropies, obtained from ³¹P MAS NMR spectra, show that the terminal P atoms of the $P_3O_{10}^{5-}$ ions have a negative shielding anisotropy parameter ($\Delta \sigma = \delta_{iso} - \delta_{33}$) in agreement with similar observations reported for diphosphates.

Based on the MP2/SCF optimised geometry of the FCO₂⁻ anion, the shielding both at the ¹³C and ¹⁹F nuclei have been calculated by the IGLO-method. ¹⁴⁸ The different contributions to the shielding, stemming from the respective bonds, lone pairs and inner electron shells have been reported. The calculated chemical shifts have been compared to the experimentally observed ¹³C and ¹⁹F shifts. The shielding depends on the C–F bond length and the corresponding O–C–O bond angle. C–F bond lengthening is accompanied with a decrease of the magnetic shielding of the ¹⁹F nucleus, mainly caused by the fluorine lone pairs, and an increase of the magnetic shielding of the ¹³C nucleus which is mainly affected by the C–F bond electrons. Finally, this study confirms the expected geometric particularity of the ion: that is a weak C–F bond and open O–C–O bond angle of a planar entity. The interpolated C–F bond lengths derived from the experimental chemical shifts by this methodology is 1.55 Å (¹³C NMR) and 1.60 Å (¹⁹F NMR) and are thus close to that of 1.505 Å from an *ab initio* calculation.

A 2D NMR method for characterising the principal values and relative orientations of the EFG and the CS tensors of half-integer quadrupolar sites has been presented. He technique exploits the different contributions that quadrupolar and shielding interactions impart on the evolution of MQ and SQ coherences, in order to obtain 2D powder lineshapes that are highly sensitive to these nuclear spin coupling parameters. Different spinning variants of this experiment were assayed, but it was concluded that a static version can yield the highest sensitivity to the values of the principal components and to the relative geometries of the local coupling tensors. Good agreement between data obtained on Rb and Coupling tensors. Good agreement between data obtained on this experiment was obtained.

 $^{51}\mathrm{V}$ static and MAS NMR of central transition has been shown to be an effective method for the characterisation of strongly bonded V(V) species in supported vanadia catalysts. 150 Determination of EFG and CS tensors parameters from both static and MAS NMR spectra of central transition permits the extraction of all NMR parameters with a reasonable accuracy. A large $^{51}\mathrm{V}$ quadrupolar constant (14–16 MHz) has been obtained for strongly bonded V(V) species, whereas CSA tensor components were found to be close to those for bulk $\mathrm{V_2O_5}$.

4.2.4 Indirect and Residual Dipolar Interactions. The 13 C CP MAS NMR spectra of various nitroanilines have been measured, and the origin of the differential broadening observed between the signals split by the residual dipolar interaction with 14 N has been clarified experimentally. 151,152 The dipolar interaction between 1 H and 14 N is responsible for the 13 C differential broadening, while the direct dipolar interaction with 1 H is neglected. A molecular motion can eliminate the differential broadening, which is presumably the π flip of the NH₂ group around the C–N axis.

VT ¹³C single-pulse and CP MAS NMR spectra of homochiral tetrahydro-2*H*-1,3-oxazines have been reported. ¹⁵³ Asymmetric multiplets observed for the carbons directly bonded to the nitrogen have been interpreted using ¹³C, ¹⁴N indirect and residual dipolar interactions. ¹⁴N quadrupolar parameters and ¹*J*(¹³C, ¹⁴N) have been determined from numerical simulations of ¹³C lineshapes.

The cobaltocenium ions were studied by ¹³C CP MAS NMR. ¹⁵⁴ The ring carbon signals showed splitting patterns which are due to ⁵⁹Co, ¹³C dipolar coupling. The dependence of the patterns on the field, the rotor spinning rate and the temperature was investigated, and full-matrix diagonalisation treatment was used to fit the spectra. The patterns were better resolved at lower fields and to some extent at lower spinning rates. Lineshape fitting yielded dipolar and indirect isotropic ⁵⁹Co, ¹³C coupling constants of 530 and 40 Hz, respectively. When the counter ion was changed from PF₆⁻ to Cl⁻ the dipolar coupling pattern was not present, probably because of self-decoupling.

 31 P CP MAS spectra of 2 phosphite- and 17 phosphine-substituted cobaloximes have been reported at two applied magnetic fields. ¹⁵⁵ In the majority of cases, eight-peak multiplets arising from $^{1}J(^{59}\text{Co},^{31}\text{P})$ coupling have been observed. The spacings between adjacent peaks gradually increase or decrease from low to high frequency, due to the presence of residual $^{59}\text{Co},^{31}\text{P}$ dipolar coupling. Values of $^{1}J(^{59}\text{Co},^{31}\text{P})$ range from 225 to 372 Hz, while in the phosphite derivatives this coupling is considerably larger, from 420 to 615 Hz. The magnitudes of $^{1}J(^{59}\text{Co},^{31}\text{P})$ and dipolar shifts have been shown to be dependent upon the nature of the axially-substituted ligands.

The first observation of residual dipolar couplings in MAS and MQ MAS NMR spectra of half-integer quadrupolar nuclei has been reported. The fine spectral splittings observed in the ¹¹B MAS spectrum of crystalline triethanolamine borate have been attributed to the residual ¹¹B–¹⁴N dipolar coupling, which is not completely averaged by MAS. This interpretation has been corroborated by the observation of an asymmetrical doublet in the ¹¹B MQ MAS spectrum.

4.3 Other Experimental Aspects. – 4.3.1 Single Crystal Studies. The construction of a single-crystal NMR probe with a new two-axis geometry for the goniometer has improved the sensitivity of the NMR response from small crystals. This allows studies of the smallest crystals used so far in single-crystal NMR. The goniometer of the probe uses only two different mountings of the crystal, and the rotation axis of the goniometer is tilted 45 degrees with respect to the direction of the magnetic field. By moving the goniometer outside the rf coil, the filling factor and the probe sensitivity increase. The improved sensitivity for the probe has been illustrated by the ³¹P–{¹H} CP spectrum of a 0.088 mm³ crystal of (NH₄)₂HPO₄ and a ⁸⁷Rb single-pulse spectrum of a 0.048 mm³ crystal of RbZn₂(HPO₄)PO₄. The capability to determine precise parameters for the SSNMR interactions using the new probe has been demonstrated by ²³Na and ⁸⁷Rb single-crystal studies of NaNO₃ and RbClO₄.

A gain in detection sensitivity of more than three orders of magnitude has been achieved in HR ²H SSNMR of monocrystalline fluorene-²H₁₀ by applying optical nuclear polarisation *via* excited tripler states of acridine guest

molecules.¹⁵⁸ The sensitivity gain has been utilised to measure the angular dependence (rotation pattern) of the ²H nuclear magnetic resonance lines. In this way the principal values and orientations of all ²H quadrupolar tensors have been determined.

The orthorhombic-to-hexagonal phase transition for constrained ultradrawn polyethylene fibres has been investigated ¹³C CP (MAS and static). ¹⁵⁹ The calculation of the ¹³C chemical shift has revealed that 7% gauche defects are included in the hexagonal phase. In the CP ¹³C NMR spectra measured by setting the orientation axis perpendicular to the static magnetic field, two resonance lines assignable to σ_{11} and σ_{22} for the CH₂ carbons that appear in the orthorhombic phase merge to a single resonance line at an upfield position compared to the average of σ_{11} and σ_{22} in the hexagonal phase. When the orientation axis is set parallel to the static magnetic field, no remarkable change has been observed in the hexagonal phase for the resonance line appearing at σ_{33} . These experimental results indicate that gauche defects such as kinks should be introduced at random along each molecular chain, and independent jump rotations occur around the molecular chain axis for the sequences between the gauche defects in the hexagonal phase. It has also been found that the π jump rotation around the molecular chain axis is induced in the orthorhombic phase at temperatures near the orthorhombic-to-hexagonal phase transition.

With nutation NMR for a spin I=5/2 system, the relative line intensities of the central and the inner- and outer-satellite transitions have been calculated as functions of quadrupolar coupling and rf pulse strength. The method has been illustrated in α -Al₂O₃ crystals (ruby and corundum) with the single-crystal ²⁷Al nutation NMR spectra. The new feature that the rf pulse strength shows reduced effect on the satellite transition lines according to the quadrupolar coupling has been discussed by using a fictitious spin- 1 / $_2$ operator

Single-crystal ⁹⁵Mo NMR spectra for a crystal of Mo(CO)₆ have been acquired for the central and satellite transitions. ¹⁶¹ The spectra have been analysed in terms of the EFG and CS tensors. The orientations of the two tensors have been obtained without any *a priori* knowledge of the crystal symmetry of the Mo(CO)₆ octahedron. The data from single-crystal NMR fully confirm the magnitudes and relative orientation of the EFG and CS tensors determined in a recent ⁹⁵Mo powder NMR study of Mo(CO)₆. Finally, it has been shown that slow-speed spinning ⁹⁵Mo MAS NMR at 14.1 T allows determination of the NMR parameters with good precision for the two tensorial interactions, despite the small CS anisotropy.

31P and ¹³C CS tensors in the phosphoenolpyruvate moiety have been determined from rotary resonance recoupling ¹³C and ³¹P MAS and single crystal ³¹P NMR. ¹⁶² The ³¹P CS tensors have been assigned using the orientation-dependent ³¹P–³¹P dipolar splittings of the resonance lines. From ¹³C MAS NMR experiments with ³¹P rotary resonance recoupling on polycrystalline powder samples the orientations of the ³¹P CS tensors have been determined.

4.3.2 Relaxation, Spin Diffusion and Polarisation Studies. ¹⁹F NMR spinechoes and free induction decays (FIDs) have been observed from samples of fluoridated trabecular canine bone powder, with varying fluoride concentrations. ¹⁶³ Curve fitting of echo envelopes and FIDs was performed using a two-component model function, where one of the components incorporates the effects of dipolar coupling. This function provides a good match for both echo envelopes and FIDs. Based on the second moment measurements, it has been argued that ¹⁹F spins in bone mineral typically experience weaker heteronuclear dipolar coupling than those in the mineral hydroxyapatite, which is often considered to be a prototype for bone mineral.

Relaxation calculations for rapidly spinning samples show that spin-lattice relaxation time (T_{1Z}) anisotropy varies with the angle between the rotor spinning axis and the external field. When the rate of molecular motion is in the extreme narrowing limit, the measurement of T_{1Z} anisotropies for two different values of the spinning angle allows the determination of linear combinations of the static spectral densities, which are sensitive to molecular geometry and the rate and trajectory of motion. The utility of these phenomena has been demonstrated with 13 C NMR experiments: for ferrocene- 2 H₁₀ deuteron T_{1Z} and T_{1Q} anisotropies and the relaxation time of the 13 C MAS peak provide sufficient information to determine the orientation dependence of all individual spectral densities.

Paramagnetic effects of Fe(III) species on T_1 of fluid protons in porous media has been studied. In the absence of paramagnetic impurities, surface relaxivities of quartz sand and silica gel samples of known porosity and surface area at any pH were lower than any previously reported values. It has been shown that relaxation rate of the bulk pore fluid increased linearly with increasing Fe(III) concentration and varied with speciation of the ion.

¹H NMR spin-diffusion experiments have been carried out in order to investigate the domain structure of semicrystalline poly(vinylidene fluoride) by means of ¹H-¹⁹F NMR dual-channel CP MAS. ¹⁶⁶ The ¹⁹F NMR detection of ¹H spin-diffusion gives a much higher discrimination of the effect due to the large chemical shift differences between the signals of the crystalline and amorphous regions. Different mobility filters were applied in order to create a magnetisation profile which allowed the measurement of the transfer from the crystalline regions to the mobile parts and *vice versa*. The data for the magnetisation transfer of the spin-diffusion process support the two-component model of the polymer.

Relatively efficient spin diffusion among unprotonated carbons can be achieved by a 13 C NMR multiple-pulse sequence with a low-duty cycle. 167 The spin diffusion occurs among transverse-magnetisation isochromats, while the total transverse magnetisation is a conserved quantity under the average Hamiltonian. The 'flip-flop' term of the dipolar-coupling average Hamiltonian is the same as in the full dipolar coupling. For a sample of 40% (COO)- 13 C-labeled poly(vinyl acetate), with 13 C in ester groups accounting for 7% of all heavy atoms, magnetisation equilibrates within 20 ms, while the T_2 relaxation

time of the total transverse magnetisation is similar to 40 ms. The spin diffusion coefficient has been estimated as $D = 3 \text{ nm}^2/\text{s}$.

 ^{19}F → ^{23}Na TQ CP experiments and numerical simulations have been performed on the oxyfluoride NaMoO₃F. ¹⁶⁸ Due to the orientation dependence of the EFG tensor, only a fraction of the spins in the powder can match the Hartmann-Hahn condition at the same time, for a fixed ¹⁹F rf field strength. Numerical simulations of the static TQ CP process, for different single crystallite orientations, demonstrate that the most efficient TQ CP occurs for parts of the powder where the quadrupolar splitting is largest. The TQCP matching profiles vary significantly with crystallite orientation and with spinning speed, due to the different time dependences of the quadrupolar interaction for the different orientations. The efficiencies of the SQ CP, MQ MAS and TQ CP MQ MAS experiments were compared and were found to be very similar for NaMoO₃F. The 2D TQ CP-MQ MAS experiment was illustrated.

Cross relaxation and CP from laser-polarised xenon to surface species have been studied. ¹⁶⁹ The high polarisation of optically pumped ¹²⁹Xe was transferred to surface C and Si species under MAS conditions. ²⁹Si MAS spectra of fumed silica and ¹³C spectra of chemisorbed methanol on silica were obtained using a steady flow of hyperpolarised xenon adsorbed onto the surface at 135 K. CP to ²⁹Si from SPINOE enhanced hydroxyl protons and to ¹³C from enhanced methyl protons is observed with good efficiency. A direct SPINOE transfer from ¹²⁹Xe to ¹³C without CP is observed to give the highest enhancement under these conditions.

The lateral dimensions of cellulose crystallites have been estimated using 13 C NMR signal strengths. 170 Differences in $T_{1p}(^{1}\text{H})$ were exploited to edit the 13 C NMR spectra of solid lignocellulosics, separating signals assigned to cellulose crystallites from signals assigned to amorphous material.

Relative signal areas were used to estimate the weight-averaged lateral dimensions of crystallites. Silicalite crystals have been studied using $T_1(^{29}\text{Si})$. 171 Loading of p-xylene into the silicalite channel reduces the $T_1(^{29}\text{Si})$ compared to that of empty silicalite. The relaxation time is unaffected when p-xylene- $^2\text{H}_{10}$ was used. This indicates that dipole–dipole couplings between ^1H and ^{29}Si atoms does not contribute significantly to $T_1(^{29}\text{Si})$. A method employing aromatic endoperoxide has been used for controlled addition of O_2 into silicalite samples. The results showed that interaction with O_2 is not the only relaxation mechanism for ^{29}Si , and that zeolite structural changes caused by guest molecules play an important role in determining $T_1(^{29}\text{Si})$.

4.3.3 New (Less Studied) NMR Phenomena. Hartmann-Hahn match conditions for two half-integer quadrupolar nuclei, spin-lock signal as a function of effective nutation frequency, and the correlation of effective nutation frequency and rf field strength have been reported for three samples: sodium diborate (Na₂B₄O₇), aluminum boride (AlB₂), and lithium aluminate (LiAlO₂). The observation of a new decoupling-induced recoupling phenomenon in MQ MAS spectra of half-integer quadrupolar nuclei has been

reported.¹⁷³ The origin of the effect is identical to the second-order recoupling between dipolar and anisotropic CS interactions under CW spin decoupling, which is first observed by Ernst *et al.* in the SSNMR spectra of spin-¹/₂ nuclei [*J. Chem. Phys.*, 1996 **105**, 3387].

Negative cross-peaks have been observed in the ¹⁹F 2D magnetisationexchange MAS NMR spectra of Ba₂MoO₃F₄ under fast-spinning conditions. ¹⁷⁴ The polarisation transfer dynamics have been studied as a function of the spinning frequency and the frequency separation of the resonances. The results are consistent with a novel mechanism, in which four spins simultaneously exchange Zeeman magnetisation with each other, in an energyconserving process. 2D ²⁷Al/³¹P CP MAS NMR experiments have been performed on sodium aluminophosphate glasses, providing direct detection of particular Al species connected to specific P species. 175 The spectral-editing capabilities of 2D experiments allow the elucidation of ³¹P resonances that are strongly correlated to four-, five-and six-coordinate Al species. Results from 2D contour plots and projections of spectra along the ³¹P dimension allow the assignment of phosphate structures that cannot be directly assigned from 1D ³¹P MAS spectra. Changes in the phosphate/aluminate ordering have also been monitored by inspection of the ³¹P subspectra of the 2D CP MAS, demonstrating a change in Al/P connectivity correlated to changes in molar composi-

Second-order perturbation theory predicts the existence of a 'cross term' between the quadrupolar and dipolar interactions of two spin I = 3/2 nuclei. ¹⁷⁶ This cross term manifests itself as a broadening in SSNMR spectra of spin I = 3/2 nuclei which cannot be fully removed by MAS and has on inverse dependence on the Larmor frequency, ω_0 . In these attributes, the SOQ-dipolar broadening does not differ from pure SOQ broadening. It has been shown that the recently developed 2D MQ MAS technique, designed originally to suppress SOQ broadening, allows the two broadening interactions to be separated and quantified. 1D HETCOR experiments have been utilised to determine local structural changes in sodium phosphate glass compositions with ratios of Na/P of 0.25, 0.78, 1 and 1.3. The Glasses containing only Q² (metaphosphate composition), Q² and Q¹ (between meta- and pyro-phosphate compositions), and Q^3 and Q^2 (ultraphosphate region) have been investigated using 23 Na \rightarrow ³¹P CP MAS NMR to detect direct interactions between distinct P sites and Na nuclei in the second coordination sphere. Variable-contact CP MAS experiments provide additional information about association of ²³Na nuclei with specific phosphate sites. Time constants describing the transfer of magnetisation 23 Na \rightarrow 31 P have been found to be affected by Na ion concentration in ultraphosphate glasses, and an important finding of these investigations is the degree of correlation of Na ions with Q³ sites in ultraphosphate glasses.

The feasibility of ²H-{¹H} CP MAS and its implementation in HETCOR experiments has been studied using as-made all-silica zeolites.¹⁷⁸ The results presented show that ²H-{¹H} CP MAS can be employed successfully in 2D correlation spectroscopy experiments. The effects of experimental and physical

parameters on the NMR spectra have been studied in detail. In the limit of small QCCs and weak proton homonuclear dipolar coupling, the CP behavior of the deuterons is similar to spin I = $^{1}/_{2}$ systems and ^{1}H spin-diffusion is minimal. Samples with larger QCCs and strong proton dipole–dipole coupling exhibit less efficient spin-locking of the deuterons and ^{1}H spin-diffusion is more prevalent. In this case, it is necessary to perform proton spin-diffusion experiments in conjunction with the correlation spectroscopy. Minimising ^{1}H spin-diffusion is crucial for correct interpretation of the multidimensional correlation spectroscopy experiments, which can be achieved by using short contact times. ^{2}H -{ ^{1}H } CP MAS HETCOR experiments could find uses for b0th organic and organic–inorganic solids where selective deuteration can be achieved.

A novel mechanism for ¹³C⁻¹³C polarisation transfer under MAS has been presented. ¹⁷⁹ By applying a recently proposed ¹³C⁻¹H recoupling sequence under MAS, the spin part of the ¹³C⁻¹H dipolar interaction is modulated with a particular frequency so that non-commutable time-dependent ¹³C⁻¹H and ¹³C⁻¹³C dipolar interactions interfere with each other. This novel polarisation-transfer approach has been theoretically explained and experimentally demonstrated using [1,3-¹³C] L-alanine.

4.3.4 Distance and Angle Measurements. – The viability of SSNMR distance determinations in multiple spin systems of unknown geometry using REDOR and TEDOR has been investigated. These techniques can provide distances which compare very well with those obtained by XRD if the samples contain isolated heteronuclear spin pairs and are currently being used in structural investigations of solids including peptides, polymers and inorganic materials. However, in most cases the spin system geometry was known before analysis of the NMR data, thus it is unclear whether reliable distances can be determined when the geometry of the spin system is completely unknown. To investigate the uniqueness of distance determinations from fitting of multispin REDOR and TEDOR data, theoretical calculations have been carried out. These indicate that it is highly unlikely that reliable distances can be obtained directly from REDOR and TEDOR experiments on multiple spin systems when the number of spins and their geometrical arrangement is completely unknown. Furthermore, it is possible to obtain incorrect distances if isolated spin pairs are assumed and multiple spins are present.

SSNMR distance determinations using CP between ¹⁹F and ²⁹Si have been presented. ¹⁸¹ Three analytical functions that allow efficient nonlinear least-square regression analyses of the experimental data to determine the internuclear distances for non-spinning powder samples as well as at the ± 1 and ± 2 MAS sideband matching conditions have been reported. Using these functions, a ¹⁹F–²⁹Si distance of 2.53 \pm 0.04 Å was determined for the T₁ silicon in octadecasil from fitting of the oscillatory behaviour. This distance is in good agreement with that known from the XRD structure and the previous ¹⁹F/²⁹Si REDOR and TEDOR distance measurements. The advantages and

limits of the different dipolar-based NMR techniques for heteronuclear distance determinations have been examined and discussed.

While an HR monomer structure of the ion channel forming polypeptide, gramicidin A, has been solved with 120 orientational constraints, the precise geometry of the dimer interface has not been characterised. Using both $^{13}\mathrm{C}$ and $^{15}\mathrm{N}$ labelled gramicidin A samples in hydrated phospholipid bilayers, both inter- and intra-molecular distances have been measured with a recently developed simultaneous frequency and amplitude modulation (SFAM) SSNMR scheme. Using this approach $^{15}\mathrm{N}^{-13}\mathrm{C}_1$ residual dipolar couplings across a H-bond as small as 20 Hz have been characterised. While such distances are on the order of 4.2 \pm 0.2 Å, the spectroscopy is complicated by rapid global motion of the molecular structure about the bilayer normal and channel axis. The intermolecular distance confirmed the previously described monomeric structure.

 $19F/^{29}Si$ CP has been applied under fast MAS to a powder sample of octadecasil. The magnitude of the dipolar coupling constant has been deduced directly from the line splitting between the intense singularities of the Fake-Like patterns obtained by Fourier transformation of the oscillatory polarisation transfer. The corresponding Si–F internuclear distance, $r = 2.62 \pm 0.05$ Å, is found to be in agreement with the XRD structure and the value of 2.69 ± 0.04 Å reported from REDOR and TEDOR experiments. Furthermore, the CP technique is still reliable under fast MAS where both REDOR and TEDOR sequences suffer from severe artefacts due to finite pulse lengths.

The distance between the host and guest molecular components of the supramolecular inclusion compound *p-tert*-butylcalix[4]arene-fluorobenzene has been examined by REDOR. ¹⁸⁴ No isotopic enrichment is required for either interacting nuclei. REDOR curves using internuclear distances derived directly from the XRD structural unit cell fail to match those determined experimentally. When a structural model incorporating both multiple spin interactions and molecular reorientation is used, the REDOR curve approaches the experimental curve. A mathematical treatment of the angular and distance dependence of a generalised SI_n system of *n*-spins under motional conditions has been developed. These results extend the scope of distance-determining NMR techniques such as REDOR to systems complicated by disorder, molecular reorientation and multiple-spin interactions.

Constraints on the proximity of the carboxyl carbons of the Asp-85 and Asp-212 side chains to the 14-carbon of the retinal chromophore have been established for the bR(555), bR(568) and M-412 states of bacteriorhodopsin (bR) using SSNMR spectroscopy. B5 Distances were examined via C-13 C magnetisation exchange, which was observed in 2D RFDR and spin diffusion experiments. The NMR distance constraints are in agreement with the results from diffraction studies on intact membranes and with theoretical simulations.

Magnetic dipolar couplings between the ¹⁵N atom (labeled) and neighboring ¹³C atoms (natural abundance) in three solid modifications of *N*-octyl-*d*-gluconamide have been measured using REDOR. ¹⁸⁶ The dipolar couplings in the range 45 to 1220 Hz have been converted into C–N distances. These

distances have been employed in conjunction with the ¹³C chemical shieldings of the CP MAS spectra to determine sets of possible torsion angles, which define the molecular conformation in the neighbourhood of the amide group.

The potential of the variable contact time 13 C CP MAS experiment for obtaining geometrical information has been demonstrated using the partially deuterated stearic acid. 187 It was found that the cross relaxation rate $1/T_{\rm CH}$ values for the methylene carbons are proportional to $r_{\rm av}^{-6}$, which is the averaged atomic distance between any specified carbon and protons.

Retinylidene ligand structure in bovine rhodopsin and 10-methylrhodopsin have been determine from internuclear distance measurements using ¹³C-labeling and 1-D rotational resonance MAS NMR. ¹⁸⁸ These results represent the first highly precise distance determinations in a ligand at the active site of a membrane protein. Overall, the MAS NMR data indicate a tight binding pocket, well defined to bind specifically only one enantiomer out of four possibilities and providing a steric complement to the chromophore in an ultrafast isomerisation process.

13C-27Al REDOR and TRAPDOR experiments on several Al organic compounds have been presented with the aim of detecting ¹³C-²⁷Al dipolar couplings and distances in solids. ¹⁸⁹ The ¹³C and ²⁷Al pulses have been applied to the same probe channel because their resonance frequencies are in close proximity. The different possibilities of controlling the efficiency of the TRAPDOR approach (by varying the ²⁷Al rf amplitude and the MAS frequency) have been investigated. The results indicate that TRAPDOR is superior to REDOR in resolving differences in ¹³C-²⁷Al distances when choosing the proper experimental conditions. A method to determine r_{CH} with high precision from LG CP with fast MAS and continuous LG decoupling on uniformly ¹³C-enriched tyrosine · HCl has been presented. ¹⁹⁰ When the CP amplitudes are set to a sideband of the Hartmann-Hahn match condition, the LG-CP signal builds up in an oscillatory manner, reflecting coherent heteronuclear transfer. Its Fourier transform yields an effective ¹³C frequency response that is sensitive to the surrounding protons. This ¹³C spectrum can be reproduced in detail with MAS Floquet simulations of the spin cluster, based on the positions of the nuclei from the neutron diffraction structure. Measurement of CH distances is straightforward, since the separation between the maxima for a single ¹H-¹³C pair is related to r_{CH}. The method offers an attractive route for collecting long-range distance constraints and for the characterisation of intermolecular H-bonding.

DQ heteronuclear local field NMR has been applied to two $^{13}C_2$ -labelled carbohydrate samples [1,2- $^{13}C_2$]-glucose and methyl- α -D-[1,3- $^{13}C_2$]-glucose. 191 The geometry of the $H^{-13}C^{-13}C^{-1}$ moeity was estimated using the evolution of DQ coherences under correlated heteronuclear dipolar interactions. The torsion angles in crystalline glucose were measured. The influence of anisotropic rotational diffusion, CSA, and $^{1}H^{-1}H$ spin diffusion on the torsion angle estimate has been assessed. These techniques may be applied to other structural problems such as the determination of glycosidic linkage conformations and the conformation of sugar rings in nucleotides.

A spectrum-inversion approach to extract information from MQ MAS NMR spectra in glasses has been presented. 192 This allows the reconstruction of the underlying 2D distribution of the $\delta_{\rm iso}$ correlated to the quadrupolar interaction. Correlation of the distributions of each interaction to structural local information has been attempted. A borosilicate and a basaltic-like glass have been studied using ^{27}Al and ^{23}Na TQ MAS NMR. The interpretation of the different site distributions has been discussed in terms of topological disorder (the distribution of specific geometrical parameters such as bond distances and angles). Using the semiempirical relationships previously established with crystalline silicate compounds, the distributions of the Na–O distance and the Al–O–Si bond angle have been determined from the extracted distributions of the $\delta_{\rm iso}$.

The Al–O–Si bond angles were investigated in aluminosilicate glasses by the ²⁷Al MQ MAS spectrum inversion to infer quantitative distributions of isotropic chemical shifts, enabling to estimate an angular distribution. ¹⁹³ The experimental data were compared with MD simulations.

13C⁻¹⁵N distances in uniformly ¹³C labeled biomolecules have been measured using *J*-decoupled REDOR. ¹⁹⁴ SSNMR methods and *ab initio* calculations have been employed to investigate the structure of the trimethylphosphine (TMP)-Bronsted acid site complex in zeolite HY. ¹⁹⁵

²⁷Al/³¹P and ²⁷Al/¹H rotational echo double-resonance NMR experiments were utilised to measure Al–P and Al–H–B distances, where H–B is the Bronsted acid site proton. A P–H–B distance was obtained by fitting the SSBs in the ¹H MAS NMR spectrum. The experimental internuclear distances are within the range of the Al–P, Al–H–B, and P–H–B distances obtained from *ab initio* calculations. Bronsted and Lewis acidity in zeolites has been characterised by the ²⁹Si and ²⁷Al REDOR NMR to provide the spatial arrangement of the base with respect to either the Si/Al distribution in the lattice or the coordination in the nonframework Al nano-particles. ¹⁹⁶

Pigments of titanium dioxide rutile, coated with SiO₂–Al₂O₃, have been characterised by ²⁷Al TQ MAS NMR, REDOR ²⁷Al–¹H and CP ¹H–²⁹Si experiments to provide longer range distance information. ¹⁹⁷ Two types of surface treatment can be distinguished from ²⁷Al–¹H REDOR by the presence of proton free alumina domain in the surface treatment.

4.3.5 Exotic and Troublesome Nuclei. ¹⁴N NMR spectra of solids are usually very broad due to the presence of large quadrupole coupling constants; however, even partial excitation of the whole spectrum can give valuable information. ¹⁹⁸ With MAS, the spectrum consists of a number of peaks, but normally the centreband cannot be readily distinguished from the SSBs. Multiple pulse methods of SSB elimination, such as TOSS and PASS, cannot be used for ¹⁴N because of its short spin–spin relaxation time. The SSBs can be eliminated by systematic data treatment: the SNR is enhanced by co-adding all the peaks in a MAS spectrum in a periodic way and then several spectra obtained at different spinning rates are added or multiplied together to identify the centerband. In the centreband region of the spectrum obtained from the

addition method, the residual SSBs can be distinguished from the weak signals by the use of logical or digital filtering. Results obtained by using these methods to treat the spectra of two mixtures of KNO₃, Pb(NO₃)₂ and NH₄Cl have been shown. The experimental requirements are not very stringent, the SNR is good, and peaks covering a large range of chemical shifts can be readily observed with HR.

 $^{25} \rm Mg~NMR~has~been~applied~to~study~inner-sphere~Mg^{2+}~binding~complexes~in~the~solid~state.$

³⁹K MAS NMR spectra of KNiF₃ were measured between 180 and 450 K.²⁰⁰ In the paramagnetic state (450–270 K), a shift of the ³⁹K resonance to lower frequency is observed with decreasing temperature which is due to an isotropic hyperfine interaction. This is in contrast to theory which predicts zero unpaired electron density at the potassium. In the antiferromagnetic state (below 250 K), a reduction of the shift contribution from the unpaired electrons has been observed. The temperature dependence of the ³⁹K shifts parallels that of the magnetic susceptibilities over the whole temperature range measured.

HR ⁷³Ge SSNMR spectra of organogermanium compounds have been observed for the first time; the chemical shifts and half-widths of tetraphenylgermane and tetrabenzylgermane have been reported. ²⁰¹

¹³⁷Ba MAS NMR spectra at 11.7 T have been presented for 10 ceramic materials and related inorganic compounds. ²⁰² The spectra of compounds in which Ba occurs in highly symmetric sites show sharp resonances, with a well-resolved quadrupolar lineshape in the case of BaTiO₃. In other Ba-containing ceramics and ceramic precursor compounds, the Ba typically occurs in irregular polyhedral sites, giving spectra which are considerably broader. Some of the present spectra show evidence of an expected negative trend in the resonance positions with increasing Ba coordination number. The results suggest that ¹³⁷Ba MAS NMR spectroscopy has potential value for studying some types of Ba-containing ceramics and ceramic precursors.

VT 89 Y MAS NMR studies on some yttrium-dihydride phases have been reported and yield evidence that 89 Y CP MAS techniques are an experimentally feasible route to investigate order—disorder phenomena in metal-hydride phases. 203 89 Y MAS NMR has been investigated to study the local environment of Y sites in a red phosphor and Eu doped-Y₂O₂S (Eu-Y₂O₂S). 204 Despite the presence of paramagnetic Eu³⁺ ions, HR spectra have been acquired and a number of local environments have been detected. The assignment of the resonances to different Y local environments has been made on the basis of signal intensities, chemical shifts, and spin–lattice relaxation times (T_1) in conjugation with the crystal structural data. T_1 reduction and a line-broadening due to paramagnetic Eu³⁺ ions have been discussed in relation to the distribution of Eu ions.

⁹³Nb NMR of polycrystalline Pb(Mg_{1/3}Nb_{2/3})O₃ and (1-x)Pb(Mg_{1/3}Nb_{2/3})O₃-xPbTiO₃ solid-solution relaxor ferroelectrics have been reported. ²⁰⁵ The ⁹³Nb static and MAS NMR spectra of Pb(Mg_{1/3}Nb_{2/3})O₃ have two major resonances due to the central transition ($^{1}/_{2} \leftrightarrow -^{1}/_{2}$), a sharp peak at -902

ppm and a broad resonance centered at -980 ppm. The sharp peak has been assigned to Nb(V) B-sites. The broad resonance at -980 ppm has been assigned to a range of Nb(ONb)_{6-x}(OMg)_x site configurations. Pb(Mg_{1/3}Nb_{2/3})O₃ and a related pyrochlore phase have also been studied by single- and TQ 93 Nb MAS NMR. 206

4.3.6 Quantification Aspects. A method that can yield quantitative MQ MAS spectra by correcting experimental spectra with numerical simulations has been presented.²⁰⁷ This method does not require intensive rf fields, extensive pulse optimisation or high spinning speeds, *etc.* Its effectiveness has been verified by treating the ²³Na MQ MAS spectra of a series of sodium compounds to yield almost the XRD site quantification.

Short-range order and local atomic configuration in charge-balanced aluminosilicate glasses as functions of composition have been studied using ¹⁷O and ²⁷Al MAS and TQ MAS NMR. ²⁰⁸ Enhanced resolution in ¹⁷O and ²⁷Al TQ MAS spectra allows the quantification of the spectra and the extent of disorder using a semiempirical function relating TQ MAS efficiency to a quadrupolar coupling constant. In the ¹⁷O TQ MAS spectra, variations of populations of three clearly resolved oxygen sites (Al–O–Al, Si–O–Al and Si–O–Si) are consistent with the predictions from ²⁹Si MAS NMR. The method provides improved prospects for the quantitative application of TQ MAS NMR and add to a more complete understanding of framework site connectivity in aluminosilicate glasses.

A new method for quantitation of solid-phase synthesis using $^{19}{\rm F}$ NMR spectroscopy has been presented. 209

Quantification aspects of humic acid composition in the solid state by ¹³C MAS and CP/T₁ TOSS NMR techniques have been reported. ²¹⁰ Quantitative multinuclear MAS NMR studies of zeolites have been performed using ¹H, ²⁷Al, and ²⁹Si MAS NMR investigations combined with elemental analysis. ²¹¹ Because in fully protonated samples the number of Bronsted protons equals the number of tetrahedral Al atoms in the framework. The framework Si/Al ratio of the samples was estimated from ¹H MAS NMR in combination with chemical analysis. To quantify the true Si/Al ratio of the zeolite framework, an unambiguous assignment of the peaks due to the Bronsted acid sites in the ¹H MAS NMR spectra was made. The results obtained from the quantification of the ¹H MAS NMR spectra were confirmed by those of the ²⁷Al MAS NMR spectra. In addition, the number of defect sites in the framework was determined by comparing the true Si/Al framework ratio with the Si/Al ratio derived from ²⁹Si MAS NMR.

A new method to extract quantitative information from poorly resolved 29 Si MAS NMR spectra of natural mixed-layer illite–smectite (I–S) clays has been presented. The Si–Al distribution in layered aluminosilicates have been used to link the intensities of 29 Si resonances from all Q³(nAl) sites (n = 0–3) to the tetrahedral layer Al substitution by applying Loewenstein's aluminum avoidance principle (no Al–O–Al linkages). In addition, correlations between 29 Si chemical shifts and the Al substitution have been established for illite

resonances by computer fitting of well-resolved phyllosilicate spectra. Combination of these two constraints led to a general procedure for iterative fitting of ²⁹Si MAS NMR spectra of clay minerals containing high- and low-charge sites. The applicability of the new method has been demonstrated for two I–S samples.

4.3.7 Novel Applications. It has been shown that local residual dipolar broadening of ¹H coupled to ¹³C is a sensitive way to observe motional constraints from networks and entanglements in cross-linked and uncross-linked rubber systems, and this may be easily obtained from the indirect observation of proton spin system through ¹³C resonance in the conditions of slow MAS.²¹³ The method has been used to visualise the changes in the amount of physical constraints induced during mechanical treatment, which precedes the vulcanisation process. Polymorphic behavior has a broad impact on chemical technology influencing the solid-state properties of many materials from pigments to pharmaceuticals. The simultaneous presence of two or more polymorphs may introduce ambiguities in the characterisation of materials using spectroscopy, diffraction or scattering techniques.

A 13C SSNMR method combined with the direct exponential curve resolution algorithm has been presented, 214 that allows the elucidation of component spectra from the total spectrum of a mixture of polymorphs, previously characterised by XRD.

High-speed 2D CP MAS NMR has been applied to study polymorphs of uniformly ¹³C-labeled aspartame. ²¹⁵ Three forms of crystalline aspartame have been observed. The ¹³C CP MAS NMR spectra of two of the forms of aspartame showed that certain carbons have up to three resonances due to different conformations/arrangements of molecules in the asymmetric unit cell. 2D exchange experiments on uniformly ¹³C-labeled aspartame were used to assign the spectra of aspartame. Increasing the spinning rate to 28 kHz and the ¹H decoupling power to 263 kHz allowed to observe crystallographically inequivalent sites. 2D RFDR and exchange experiments using very high spinning speed and decoupling power gave complimentary assignment information for short (1–2 bond) and long (>3 bonds) range interactions in the polymorphic forms.

The use of MAS (>30 kHz) in tandem with delayed echo acquisition has been shown to yield very HR 1 H MAS NMR spectra of complex natural organic materials: cork and wood components. 216 The effect of the spinning rate on the 1 H NMR spectra was evaluated with single-pulse acquisition and delayed-echo acquisition. The delayed-echo acquisition spectra presented linewidths as sharp as 67 and 25 Hz. The narrow peaks, characterised by proton T_{1} and T_{2} relaxation, were assigned to the isotropic chemical shifts and the general spectral features were shown to correlate with the sample chemical structure.

A simple but efficient ¹³C MAS NMR method has been presented for the determination of the location of embedded molecules such as peptides relative to biological membrane surfaces by exploiting the interaction with paramag-

netic lanthanide ions.²¹⁷ Tested on the membrane-embedded 50 residue long M13 coat protein,¹³C labeled at its Val-29 and Val-31 residues, no paramagnetic quenching was observed for the peptide resonances by Dy³⁺, suggesting that Val-29 and Val-31 are not in close proximity to the bilayer interface.

HR multidimensional NMR methods can be used to correlate many backbone and side-chain chemical shifts for hydrated micro-crystalline Basic Pancreatic Trypsin Inhibitor (BPTI). Results from two homonuclear transfer methods, RFDR and spin diffusion, were compared. Typical ¹³C peak line widths are 0.5 ppm, exhibiting many resolved peaks. 2D ¹³C, ¹³C correlation spectra of BPTI have sufficient resolution to identify and correlate many of the spin systems associated with the amino acids. The agreement between shifts measured in the solid state and those in solution is typically good, although some shifts near the ion binding sites differ by at least 1.5 ppm. These studies were conducted with approximately 0.2 to 0.4 µmol of enriched material; the sensitivity of this method is also adequate for other biological systems.

The acquisition of 2D heteronuclear NMR local field spectra under moderately fast MAS conditions has been discussed. ²¹⁹ It has been shown both experimentally and with the aid of numerical simulations on multispin systems that when sufficiently fast MAS rates are employed, quantitative dipolar SSB patterns from directly bonded spin pairs can be acquired in the absence of ¹H-¹H multiple-pulse homonuclear decoupling even for 'real' organic solids. The MAS speeds involved are within the range of commercially available systems (10–14 kHz) and provide SSBs with sufficient intensity to enable a reliable quantification of heteronuclear dipolar couplings from CH groups. Simulations and experiments show that useful information can be extracted even from more tightly coupled CH₂ moieties. Applications of this approach to the analysis of molecular motions in solids have been presented; characteristics and potential extensions of the method have also been discussed.

The structure of AlPO₄-CJ2 aluminophosphate has been reinvestigated by MAS, MQ MAS, CP MQ MAS and HETCOR techniques. The CP MQ MAS method showed that the sample, when not allowed adequate time for crystallisation, included a substantial concentration of amorphous species and the crystalline component was cleanly singled out by this technique. The relative populations and the distributions of F and OH groups within the structural building units and their distribution of within the crystalline structure have been studied by the $^{19}\text{F} \rightarrow ^{31}\text{P}$ HETCOR.

New structural strategies to access structure determination of microporous materials by SSNMR techniques have been presented.²²¹ A set of 2D experiments using RFDR (¹⁹F), DQ (³¹P) and HETCOR (¹⁹F and ³¹P) has been used to analyse the topology of the microporous network.

The biologically important compound, hydrated disodium adenosine 5'-triphosphate (ATP) has studied by ²³Na NMR (MAS, CP MAS and MQ MAS) at 4.7 and 9.4 T. ²²² MQ MAS experiments enabled the resolution of all the four crystallographically different Na sites in the unit cell at 4.7 T, but not at 9.4 T. The four sites were successfully assigned and the principal elements of

the quadrupolar tensors and isotropic chemical shifts of the ²³Na nuclei at each lattice site determined by analysing and computer simulating the experimental spectra.

The temperature dependence of ^{207}Pb chemical shift in MAS NMR spectrum of Pb(NO₃)₂ has been shown to provide a sensitive method to calibrate temperature in MAS NMR: the temperature dependence is uniform in the range $30\text{--}400\,^{\circ}\text{C}$.

Sample heating due to the friction between the rotor and the bearing gas at MAS frequencies up to 35 kHz has been studied using the ¹¹⁹Sn NMR signal of the chemical shift thermometer Sm₂Sn₂O₇. ²²⁴ The frictional heating effect has been quantified, and a calibration of the sample temperature under ultrafast MAS conditions has been described. An empirical expression has been given which allows the determination of the sample temperature as a function of the bearing gas temperature and the spinning frequency.

5 Structural Applications

5.1 Organic Solids. -

Compound	Nuclei	Comments	Ref.
3,5-Bis(trifluoromethyl)pyrazole	¹ H	Tetramers, N-H···N hydrogen	
		bonds	225
Columnar hexabenzocoronene	¹ H	π-π packing, ¹ H- ¹ H proximities by DQ MAS	226
Triphenylene &	1 H	π - π packing, 1H-1H proximities by	
hexabenzocoronene derivatives		DQ MAS	227
Hexabenzocoronene carboxylic	1 H	π -π packing, H-bonding,	
acid derivative		DQ-filtered MAS	228
Pyridyl nitronyl nitroxides	1 H	Spin density distribution, MAS,	
	1.2 12	DFT calculations	229
Nitronyl nitroxide radicals	^{1,2} H, ¹³ C	Spin density distribution, MAS, <i>ab initio</i>	230
Conjugated nitroolefins in	$^{1}H,^{13}C$	Inclusion complexes, MAS	231
β-cyclodextrin		•	
Piroxicam in β-cyclodextrin	¹³ C	Inclusion complex, guest	
		conformation,	232
Bisepoxide & α,ω-diamine in α-cyclodextrin	¹³ C	Inclusion complexes, CP MAS	233
β-D-glucopyranoside derivatives	¹³ C	Polymorphism, CP MAS	234
1-Arylpiperazine-4-alkylimides	¹³ C	Hydrochlorides and perchlorates, CP MAS	235
N-Benzoyl(-DL-)-L-phenylalanines	¹³ C	H-bonding, 2D EXSY & 1D	233
Tr Benzeyi (BE) E pilenyiaianines	C	ODESSA	236
2-hydroxy-5-methyl-	¹³ C	Intramolecular O–H···N	
isophthaldehyde, dianyl of		H-bonding, CP MAS	237
Tetra(C-undecyl)calix[4]	¹³ C	DMFA solvate, dimers, CP MAS,	
-resorcinarene		XRD	238
3'-Azido-3'-deoxythymidine (AZT)	¹³ C	Anti-HIV-1 agent, H-bonding, CP MAS	239

1,5-Dimethylsemibullvalene-	¹³ C	β form, VT CP MAS	240
2,6-dicarbonitrile <i>p</i> -Xylene clathrate of Dianin's compound	¹³ C	Single guest site, CP MAS, XRD	241
(Perilene) ₂ PF ₆ ·2/3(Tetrahydrofurane)	¹³ C	Organic conductor, Knight shifts, CP MAS	242
(-)-Scopolamine HBr/HCl salts	¹³ C	Conformational pseudopolymorph CP MAS	
(-)-Scopolamine, hydrobromide 'trihydrate'	¹³ C	MAS induced phase-transition, CP	
1 <i>H</i> ,3 <i>H</i> -pyrido[1,2- <i>c</i>] pyrimidine-1,3-diones	¹³ C	Dimers, CP MAS, XRD	245
Triphenylmethanol, Ph ₃ COH	¹³ C	H-bonded tetramers, MAS, Neutron Diraction	246
2-Methyl-4-(<i>p</i> -X-phenylazo)- imidazoles	¹³ C	N-H···N & C-H···O(N) interactions, CP MAS	247
Benzylideneanilines	¹³ C	H-bonding and tautomerism, CP MAS, XRD	248
Metacyclophane/C ₆₀ complexes	¹³ C	π-π & σ-π interactions, CP MAS, XRD	249
2,2-Dimethylcyclohexane- 1,3-dione dioximes	¹³ C	Intermolecular H-bonding, CP MAS, XRD	250
Tris(o-phenylenedioxy)- cyclotriphosphazene	13 C, 31 P	Inclusion complexes, T ₁ (¹³ C), CP	251
NH-Pyrazole derivatives	¹⁵ N	Intermolecular N–H···N bonds, CP MAS	252
Imidazole	¹⁵ N	Protonic conduction, 2D	253
Diazadiphosphetidines with fluorine substituents	¹⁹ F, ³¹ P	¹⁵ N-exchange NMR CS tensors by triple resonance ³¹ P-{ ¹⁹ F, ¹ H}	254 254

5.2 Organometallics and Coordination Compounds. - ^{1}H - Temperature dependence of ^{1}H NMR lineshapes and second moments in polycrystalline BF₄ $^{-}$ salts of 1-propyltetrazole complexes of Fe(II) and Zn(II) have been reported. 255

 $^{1}H,^{2}H,^{17}O$ - Diffusion and dynamic properties of hydration water in (+/-)-tris(ethylenediamine)cobalt(III) chloride hydrate have been studied by means of $^{1}H,^{2}H$, and ^{17}O NMR techniques. 256

 ^{13}C - ^{13}C MAS has been applied to study strontium carbonate crystals strongly bound by H-bond to poly(carboxylate) ligand, 257 solid-state conformation of N-methylene(phenyl)phosphinic acid derivatives of cyclen and cyclam, 258 polymorphic structures of alkaline earth metal acetylides, MC₂ (M = Ca, Sr, Ba), 259 selenocyanogen and related compounds 260 and the stereochemistry of the LiNCS complex of 1,4,7,11-tetraoxacyclotetradecane. 261

¹³C, ¹⁵N - Combined ¹³C and ¹⁵N CP MAS studies have been undertaken to investigate rotation isomers of bis(diethyldithiocarbamato) zinc(II) adduct with pyridine, ²⁶² the structural reorganisation of bis-(diethyldithiocarbamato)-pyridine-zinc(II) and -copper(II), ²⁶³ adduct-formation of diethyldithiocarbamate zinc(II) and copper(II) complexes with morpholine ²⁶⁴ and CCl₄, ²⁶⁵

palladium(II) chloride complexes with 1,2,4-triazolo[1,5-a]-pyrimidines²⁶⁶ and dicopper(I) analogues of disilver(I) iminocryptates.

¹³C, ²⁹Si - ¹³C and ²⁹Si CP MAS have been applied to study immobilisation of rhodium complexes in chiral organic-inorganic hybrid materials. ²⁶⁸
¹³C, ³¹P - ¹³C and ³¹P CP MAS studies have been used to study poly-

morphism of bis(dineopentoxyphosphorothioyl)diselenide.²⁶⁹

- ¹⁷O Titanium oxo-organo clusters and monodisperse nanoparticles of titania anatase having 20 Å and 30 Å oxide core diameters, have been characterised by ¹⁷O NMR.²⁷⁰ The ¹⁷O NMR linewidths are dominated by chemical shift distribution with a minor contribution from SOQ broadening. ¹⁷O MAS NMR has been applied to identify surface species.
- ³¹P ³¹P CP MAS has been applied to study a complex obtained from Sb powder and diiodine activated by tetraphenyldithioimidodiphosphine,²⁷¹ triphenylphosphinecobaloximes, ²⁷² complexes of octacarbonyldicobalt with bis(diphenylphosphanyl)amine, bis(diphenylphosphanyl)methane, and 1,1,1-tris(diphenylphosphanyl)ethane, ²⁷³ complexes of copper(I) and silver(I) halides with trimethylphosphine, ²⁷⁴ tris(triphenylphosphine)-copper(I) and -silver(I) formates²⁷⁵ and bis(trimethylphosphine)gold(I) halides.²⁷
- ⁵¹V ⁵¹V SSNMR has been used to study bis(acetylacetonate)oxovanadium(IV) and derivative. 277
- ¹¹⁹Sn ¹¹⁹Sn SSNMR techniques have been applied to characterise bis(trifluoroacetato)dibutyltin 1,10-phenanthrolin²⁷⁸e (antitumor agent).²⁷⁷
- **5.3** Natural Products. ${}^{-1}H$ The proton spin-lattice relaxation times, $T_1({}^{1}H)$, for isolated cuoxam lignin and fully bleached cellulose have been measured as a function of pH in order to examine for possible macromolecular connectivities that may be present between lignin and carbohydrates within softwood.²⁷⁹
- ¹H, ¹³C The effect of hydration on the mobility of polysaccharides in onion cell-wall material (CWM) has been studied by SSNMR. $T_{10}(^{1}\text{H})$ and $T_{1}(^{13}\text{C})$ and 2D WISE experiments have been applied to characterise effects of hydration on polymer mobility in onion cell-wall material; the 2D WISE revealed a spatial heterogeneity of the polysaccharide dynamics across the sample, showing at least two different motional regimes for pectin and cellulose domains. ²⁸⁰ Combined ¹H and ¹³C NMR study of cellulose metabolism by Fibrobacter succinogenes S85 has been reported.²⁸¹
- ²H, ¹³C ²H and ¹³C NMR techniques have been applied to study structure and dynamics in fruit cuticle polyesters²⁸² and hydration of waxy and mealy potato starch cultivars. 283
- ¹¹B Boron-11 NMR imaging and MAS spectroscopy have been used to characterise the nature and distribution of boron compounds after preservative treatment of radiata pine wood with trimethylborate. 284
- ¹³C Proton relaxation-induced spectral editing (PRISE) techniques have been applied in ¹³C CP MAS studies of plant cell wall materials and model systems. ²⁸⁵ ¹³C MAS techniques have been employed to investigate the cell walls of potatoes and Chinese water chestnuts, ²⁸⁶ polysaccharides in sugar beet cell walls, ²⁸⁷ modern resins, ²⁸⁸ acetylated and methylated derivatives of homo-

galacturonans, 289 a mixed-linked (1 \rightarrow 3), (1 \rightarrow 4)- β -D-glucan extracted from barley, 290 hydration capacity of scleroglucan, 291 insect chitin isolated from beetle larva cuticle and silkworm ($Bombyx\ Mori$) pupa exuvia, 292 natural fibre from sugar cane, 293 water-soluble/insoluble derivatives of hyaluronic acid chestnut starch, oil composition in transformed Canola seeds, 294 lignins from several Australian hardwoods, 295 13 C-enriched human hair keratin, 296 crystallinity and structuring role of water in native and recrystallised starches, 297 the supermolecular structure of bast fibres and their changes by mercerisation, 298 ultrathin cellulose microfibrils, 299 cellooligosaccharide peracetates as a model for cellulose triacetate, 300 carboxyl content in oxidised celluloses 301 and cellulose I. 302 CPMAS spectroscopy was used to characterise the structural changes of cell wall polymers in beech wood $Fagus\ sylvatica$ during drying processes. 303

 13 C, 29 Si - The occurrence and thermal transformations of silicon-containing species in biomass materials (rice hulls and endocarp of babassu coconut) have been studied using 13 C and 29 Si MAS NMR. 304

¹⁵N - ¹⁵N variable contact time CP MAS has been employed to investigate the reaction products formed in wood composites bonded with ¹⁵N-enriched polymeric diphenylmethane diisocyanate based adhesives. ³⁰⁵

 ^{31}P - ^{31}P MAS has been used to characterise the trabecular rat bone mineral. 306

5.4 Biochemical, Medical and Pharmaceutical Applications. – *5.4.1 Proteins*. A new approach to efficiently determine the backbone conformation of solid proteins that utilises selective and extensive ¹³C labeling in conjunction with 2D MAS NMR has been presented. ³⁰⁷ The selective ¹³C labeling has been used to reduce line broadening and other multispin complications encountered in SSNMR of uniformly labeled proteins while enhancing the sensitivity of NMR spectra. Information on the secondary structure of a labeled protein has been obtained by measuring multiple backbone torsion angles φ simultaneously, using an isotropic–anisotropic 2D correlation technique, the HNCH experiment. Experiments for resonance assignment of a selectively ¹³C labeled protein have been performed using ¹⁵N–¹³C 2D correlation spectroscopy. From the time dependence of the ¹⁵N–¹³C dipolar coherence transfer, both intraresidue and interresidue connectivities can be observed, thus yielding partial sequential assignment. The method has been demonstrated on a 8.5 kDa model protein, ubiquitin.

A new method for the site-resolved identification of the secondary structure of solid peptides and proteins has been presented. This technique exploits the correlation between the backbone conformation and the C_{α} CSAs of proteins. The $^{13}C_{\alpha}$ CSAs have been measured under fast MAS using a new sequence of 16π pulses with special timing to reintroduce the CSA selectively. Quantitative values of the CSAs have been determined from the magnetisation decay, as demonstrated for several amino acids. To achieve HR spectra, the CSA filter experiment has been combined with 2D $^{15}N^{-13}C$ correlation spectroscopy. Applied to selectively and extensively $^{13}C^{-13}$

labeled and uniformly 15 N-labeled ubiquitin the 2D experiment yields a spectral pattern that corresponds primarily to α -helical residues. This agrees with the previous finding that helical residues have smaller CSAs than sheet residues. However, the quantitative CSA differences between the helical and sheet conformations are less pronounced than indicated by solution-state NMR. This CSA filter technique provides an efficient and site-resolved method for characterising the secondary structure of extensively isotopically labeled proteins.

Several 2D and 3D MAS correlation techniques for resonance assignment have been described and applied at 7 T to ^{13}C and ^{15}N labeled ubiquitin to examine the extent of resonance assignments in the solid state. 309 Both interresidue and intraresidue assignments of the ^{13}C and ^{15}N resonances have been addressed. The interresidue assignment was carried out by an N(CO)CA technique, which yields $N^i-C_\alpha^{\ i-1}$ connectivities in protein backbones via two steps of dipolar-mediated coherence transfer. The intraresidue connectivities were obtained from a new 3D NCACB technique, which utilises the well resolved C_β shift to distinguish the different amino acids. Additional amino acid type assignment was provided by a ^{13}C spin diffusion experiment, which exhibits ^{13}C spin pairs as off-diagonal intensities in the 2D spectrum. To better resolve carbons with similar chemical shifts a dipolar-mediated INADE-QUATE has been applied. The sensitivity and resolution of these experiments have been evaluated.

In order to clarify the difference between solution NMR and XRD analyses concerning the presence of α -helical structure in protein A, the conformation-dependent chemical shifts of the ^{13}C -labeled carbonyl carbons for selectively labeled protein A have been used. 310 In the ^{13}C CP MAS NMR spectra, the higher-field shifts of the carbonyl carbons of ^{13}C -labeled Thr and Val residues compared with the random coil chemical shifts both in solution and solid state imply the presence of the third helix in the polypeptide chain, in contrast to the crystal structure. Thus, a combination of selective isotope labeling and conformation-dependent chemical shifts has been shown to be a good probe to monitor the local structure of homologous protein in solution and solid state.

The ionisation state and H-bonding environment of the transition state analogue inhibitor, carboxymethyldethia coenzyme A, bound to citrate synthase have been investigated using ^{13}C MAS NMR. 311 The CS tensor values of the carboxyl groups of the inhibitor were obtained. 2D $^{1}H^{-13}C$ heteronuclear correlation spectra were obtained. Strong cross-peaks were observed from the carboxyl carbon to protons with chemical shifts of 22 ± 5 ppm. Both the ^{1}H chemical shift and the intensity of the cross-peak indicate a very short H-bond to the carboxyl group of the inhibitor, the C···H distance based upon the cross-peak intensity being 2.0 ± 0.4 Å.

Other ¹³C NMR applications have encompassed studies of a conformational change of bacterio-opsin induced by binding of retinal during its reconstitution to bacteriorhodopsin, ³¹² hydrophobic core of [3-¹³C]Ala labeled bacteriorhodopsin ³¹³ and dynamic conformation of a triblock protein hydrogel. ³¹⁴

¹⁵N NMR techniques have been used to investigate the protonated Schiff

base linkage in the $[\alpha,\epsilon^{-15}N_2]$ Lys-rhodopsin³¹⁵ and the protonated retinylidene Schiff base nitrogen in rhodopsin.³¹⁶

REDOR NMR has been applied for the direct identification of enzyme active site residues in KDO8P synthase.³¹⁷

5.4.2 Peptides. The tetrapeptide Ala *n*-lle-Gly-Met bound to a Wang resin *via* the methionine residue has been studied by ¹H MAS NMR and compared to the same peptide in solution.³¹⁸ The origin of the residual NMR linewidth observed for the bound form has been investigated. The dynamics of the peptide has been shown to be only marginally responsible for the increased linewidth; the major cause of the line broadening appears to be nonaveraged magnetic susceptibility differences.

¹³C SSNMR techniques have been applied to investigate the conformation of an N-terminal peptide of salivary statherin both free and adsorbed on hydroxyapatite crystals. 319 The ¹H MAS, ²H static, ¹⁵N CPMAS and ¹⁵N-¹H dipolar CSA NMR spectra of two different modifications of C-α-deuterated ¹⁵N-polyglycine, namely PG I and PG II (-CO-CD₂- (NH)-¹⁵N-)(n) have been measured. The data from these spectra have been compared to previous NMR, IR, Raman and inelastic neutron scattering work. 320 The torsion angle φ was determined at three positions by measuring distances between the backbone carbonyls carbons in the indicated adjacent amino acids using dipolar recoupling with a windowless sequence. Global secondary structure was determined by measuring the dipolar coupling between the ¹³C backbone carbonyl and the backbone 15 N in the I \rightarrow i + 4 residues using REDOR. The measured average φ angle and the observed high conformational dispersion suggest a random coil conformation. REDOR measurements confirm the presence of helical content. These results support a structural model where the N-terminus is disordered, potentially to maximise interactions between the hydroxyapatite surface and the negatively charged side-chains.

The orientation of the insect antibiotic peptide cecropin A in the phospholipid bilayer membrane has been determined using ^{15}N NMR. 321 The ^{15}N chemical shift from these uniaxially oriented samples display a single ^{15}N chemical shift frequency for each labeled residue. Both frequencies are near the upfield end of the ^{15}N chemical shift powder pattern, as expected for an α -helix with its long axis in the plane of the membrane and the NH bonds perpendicular to the direction of the magnetic field.

The secondary structure and membrane-associated conformation of a synthetic peptide corresponding to the putative membrane-binding 38 C-terminal residues from bovine PP3 has been determined using ¹⁵N NMR. ³²² ¹⁵N SSNMR shows that the peptide is associated to the membrane surface with the amphipathic helix axis oriented parallel to the bilayer surface.

5.4.3 Lipids and Membranes. ²H SSNMR has been used to investigate the properties of bicelles,³²³ the equimolar complex of the lipid-like chelating agent with Tm³⁺,³²⁴ membrane properties of archaeal macrocyclic diether phospholipids³²⁵ and the orientation of the deuterated methyl group in [18-

CD₃]-retinal in oriented bacteriorhodopsin. ³²⁶ ¹³C SSNMR has been applied to probe membrane surfaces and location of membrane components, ³²⁷ structure of the membrane embedded M13 coat protein, ³²⁸ and chlorpromazine interaction with glycerophospholipid liposomes. ³²⁹ Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers have been studied by ³¹P and ¹³C SSNMR. ³³⁰

5.4.4 Biomedical Applications. The technique of ¹H MAS NMR applied to intact tissues provides excellent peak resolution and thus much biochemical information. The use of computer-based pattern recognition techniques to classify human renal cortex tissue samples as normal or tumour based on their ¹H MAS NMR spectra has been investigated. ³³¹ This technique has also been used for prognostication in patients with liposarcoma. ³³² ¹H relaxation rates were related to the composition of unloaded human intervertebral disks. ³³³ The solid signal fraction depended on collagen and residue protons. The data led to a model of disk architecture in which the collagen and residue were largely solid, forming distinct water compartments; the remaining water was present in a proteoglycan gel. Limits of detection for neat poly(dimethylsiloxane) have been detected by ²⁹Si MAS NMR. ³³⁴ The limit of detection is three orders of magnitude higher than silicon levels found in human blood.

³¹P MAS NMR spectra have been measured for several oxides, such as Al₂O₃, SiO₂, TiO₂ and Ta₂O₅, which were soaked in a simulated body fluid.³³⁵ The chemical states of phosphate anions deposited on these oxides were determined. The surface Ta(V) species supported on the oxides induced a bone-like apatite nucleus, even though the base oxides did not deposit apatite.

²⁹Si and ³¹P MAS NMR were used to analyse 20Na₂O.80SiO₂ glass particles before and after soaking in a simulated body fluid. ³³⁶ The structure of the bulk glass and the glass surface, as well as the chemical states of the calcium phosphates adsorbed on the glass surface, have been examined. The chemical shifts show that the local structural environment of P atoms and ions is similar to that of hydroxyapatite.

¹⁹F MAS NMR has been used to study dental restorative materials. ^{337,338}

5.4.5 Pharmaceutical Compounds. Multidimensional SSNMR techniques have been applied to study structure and dynamics of linear peptide antibiotics isolated from amphibians, insects and humans and used as templates to design cheaper analogues for medical applications. Many of them have been prepared by solid-phase peptide synthesis with isotopic labels incorporated at selected sites. Structural analysis by SSNMR spectroscopy indicates that these peptide antibiotics strongly interact with lipid membranes. In bilayer environments they exhibit amphipathic α -helical conformations and alignments of the helix axis parallel to the membrane surface. This contrasts the transmembrane orientations observed for alamethicin or gramicidin A.

The structures of four crystalline forms of double ¹³C-labeled cimetidine, three anhydrates and a monohydrate, have been examined using ¹³C CP MAS NMR methods. ³⁴⁰ Rotational resonance magnetisation exchange curves have

been used to measure interatomic distances. DQ heteronuclear local field NMR was used to determine the relative orientations of the ¹³C-H bonds at the two ¹³C-labeled sites. These results demonstrate the feasibility of determining the complete solid-state structures of pharmaceutical compounds, and other materials not amenable to crystallography, using CP MAS NMR combined with a minimal isotope labeling strategy.

¹³C CP MAS NMR was used to identify and quantify delavirdine form changes in tablets.³⁴¹

Multinuclear SSNMR methods (¹³C, ¹⁵N, ³¹P and ⁵⁹Co) were applied to the structural and dynamic analysis of cyanocobalamin (vitamin B-12) polymorphs. ³⁴² Two polymorphs could be identified in these studies. Most informative about the molecular differences characterising these forms were the ¹³C NMR data, which showed sharp and well-resolved resonances indicative of high sample crystallinity.

²⁷Al MAS NMR has been explored to characterise aluminum hydroxyphosphate vaccine adjuvants.³⁴³ All the adjuvants were found to contain both tetrahedrally and octahedrally coordinated Al. The octahedral form was always predominant. The chemical shifts corresponding to octahedral aluminum were at values intermediate between that of Al hydroxide –9 ppm) and those of phosphate-containing Al minerals (–9 ppm) and varied with the phosphate content of the adjuvant. Aside from the presence of tetrahedral and octahedral Al, there was no evidence in any of the adjuvants of distinct, structurally defined phases.

The SSNMR spectra of 3,4-methylenedioxy-*N*-methylamphetamine (MDMA) hydrochloride and a number of illicitly manufactured tablets containing this material and marketed as 'Ecstasy' have been reported. Excipients detected include lactose, cellulose, stearate salts, sucrose, starch, polyvinylpyrrolidone and sodium croscarmellose. Two samples were found to contain 3,4-methylenedioxy-*N*-ethylamphetamine, rather than MDMA.³⁴⁴

5.5 Coal, Soil Organic Matter and Other Related Materials. – 5.5.1 Coals and Related Materials. A ramped-amplitude CP (RAMP CP) has been applied to coal measurement by ¹³C SSNMR. ³⁴⁵ In the RAMP CP pulse sequence ¹³C spin-lock amplitude was changed linearly during CP while ¹H spin-lock amplitude constant. The parameters for RAMP CP MAS measurement were optimised for the Upper Freeport coal sample. The results show that the sensitivity of the RAMP CP MAS is better than that of the single-amplitude CP MAS.

¹³C MAS NMR has been used to characterise Indonesian coal, ³⁴⁶ demineralisation in native and air-oxidised coals, ³⁴⁷ structural changes of coal density-separated components during pyrolysis, ³⁴⁸ amber samples from different geographical locations, ³⁴⁹ the amorphous and crystalline phases in asphalts ³⁵⁰ and and the mobility of various asphaltene samples. ³⁵¹ Coal solubilisation through 'ionic' oxidation and base-promoted alkylation have been studied using ¹H and ¹³C CP MAS NMR. ³⁵² Petroleum coke samples of different origins and heat treated at different temperatures below 3100 K have been

studied by spectroscopic and electrochemical procedures. According to ¹³C and ¹H MAS NMR, IR, and ESR data, aromatic compounds and surface OH groups are present in green coke samples. The results of ⁶Li MAS NMR and ESR have been correlated with the experimental determination of lithium diffusion coefficients and surface properties.³⁵³

 $5.5.2~Soils.~^2H$ - $^2H~MAS~NMR~studies~of~TNT/soil~adsorption~have~been~reported.^{354}$

¹³C - ¹³C MAS NMR has been employed to study straw decomposition in soil,³⁵⁵ carbon transformations during decomposition of plant leaves in soil,³⁵⁶ soil organic carbon dynamics under long-term sugarcane monoculture,³⁵⁷ condensed domains in soil organic matter,³⁵⁸ effects of added paramagnetic ions in a de-ashed soil,³⁵⁹ chemical removal of magnetic materials,³⁶⁰ slow desorption of PCBs and chlorobenzenes from soils and sediments,³⁶¹ poly(-methylene) crystallites in humic substances,³⁶² correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds.³⁶³ relationship of soil organic matter characteristics to organic contaminant sequestration and bioavailability,³⁶⁴ and an elemental composition of humic substances.³⁶⁵

 ^{15}N - The nature of organic carbon and nitrogen in physically protected organic matter of some Australian soils 366 and in fine particle size separates of sandy soils of highly industrialised areas. 367

 ^{19}F - It has been shown that ^{19}F SSNMR observation of the sorptive uptake of hexafluorobenzene by two peat samples gives direct spectroscopic evidence for the existence of dual-mode sorption to soil organic matter. 368

³¹P - Various aspects of ³¹P SSNMR spectra of peat and mineral soils, humic acids and soil solution components have been presented. ³⁶⁹ Iron is often a major component in soil and it has been thought that the presence of paramagnetic Fe and Mn in soil components is responsible for loss of resolution in NMR spectra. It has been shown that the resolution of signals in the ³¹P NMR spectra of an Fe- and Mn-rich soil was no worse than that for a series of peat soils with a comparable concentration of P. Removal of up to 50% of the Fe produced little change in spectral resolution. It was concluded that the limitations to resolution in ³¹P SSNMR spectroscopy of soil humic substances do not stem from the presence of paramagnetic substances, but from the variable ways P species are physically held in the amorphous milieu of the organic phase.

5.6 Polymers. $-{}^{1}H$ - A series of UF resins and one MUF resin were studied by low-resolution ${}^{1}H$ NMR. The mobility of the resin during curing have been followed by measuring the T_2 with curing time. 370

The SSNMR spin diffusion technique has been employed to study polymer morphologies with a unique emphasis on interface structures. The use of ¹H detected experiments has been shown to provide high sensitivity for a fraction of the time needed to acquire the signal compared to the widely used ¹³C detection experiments of rigid and mobile polymer components.³⁷¹

The mobility of distant methyl side groups in poly(hexyl methacrylate)-block-poly(sodium acrylate) and poly(dodecyl methacrylate))-block-poly(sodium acrylate) micelles, dispersed in D₂O and characterised by SANS, has been studied using ¹H single and DQ HR and MAS NMR.³⁷²

¹*H*, ²*H* - The properties of polymer films prepared from latex dispersions are influenced by the drying or film formation process. The role of water in these films has been investigated using ¹H and ²H SSNMR spectroscopy. Different types of water could be distinguished in the spectra. ³⁷³

¹H, ¹³C - SSNMR techniques have been used to characterise cyclomaltoheptaose (β-cyclodextrin, β-CD) polymers. These insoluble materials have been investigated by SSNMR. These NMR spectra allow the assignment of the principal ¹H and ¹³C signals. The presence of two distinct components (crosslinked β-CD and polymerised epichlorohydrin) in the materials has been clearly demonstrated.³⁷⁴ Conformational conversion and molecular dynamics of the amorphous poly(ethylene terephthalate) annealed above $T_{\rm g}$ have been investigated by SSNMR and DSC. 375 The miscibility and thermal properties of poly(N-phenyl-2-hydroxytrimethylene amine)/poly(N-vinyl pyrrolidone) blends have been examined by using DSC, SSNMR techniques, and TGA.³⁷⁶ Time dependence of the gel formation in toluene solutions of polycarbonate has been investigated by 2D FTIR correlation and SSNMR spectroscopy.³⁷⁷ Blends of poly(vinyl chloride) with poly(*N*-vinyl pyrrolidone) have been investigated by FTIR and CPMAS spectroscopy.³⁷⁸ The phase behavior and segmental mobility in binary blends of polystyrene and poly(vinyl methyl ether) have been investigated. 379

Solvent dynamics and polymer–solvent interactions in syndiotactic polystyrene/ethylbenzene clathrates, as well as polymer–salt interactions in the poly(ethylene oxide)/LiCF₃SO₃ complex, have been characterised by ¹H and ¹³C SSNMR.³⁸⁰

The structure of ultradrawn ultra-high molecular weight polyethylene fibres has been investigated by SSNMR. A crystallinity of (88 \pm 2)% has been determined by traditional ^{1}H NMR lineshape decomposition, and by a new adaptation of ^{13}C NMR crystallinity determination for polyethylenes with extremely long crystalline T_1 relaxation times. 381 A new approach to characterise the reverse osmosis permeability in conjunction with the macromolecular structures and inherent polymer properties for crosslinked and linear model aromatic polyamides has been proposed. 382 The combination of ^{13}C solution NMR and SSNMR has been used to reveal the relative amount of crystalline PVC in two (50/50 wt % of poly(vinyl chloride)/di-2-ethylhexyl phthalate) samples. 383

 $^7Li,^{13}C$ - Gel-type electrolytes based on fluorinated polymers of interest for electrochemical devices have been studied by 7Li - ^{13}C SSNMR. 384 To study compositional dependent conductivity of Li⁺ ions in lithium perchlorate/poly(ethylene oxide) (LiClO₄/PEO) electrolytes, mobility of the Li⁺ ions and morphology of the electrolytes have been investigated by examining the T_1 of 7Li and by SSNMR methods. 385

 $^{^{13}}$ C - $T_{10}(^{1}$ H) and CPMAS have been employed to investigate the compat-

ibility of a polymeric blend formed by high-density polyethylene and a synthetic petroleum resin of low molecular weight. 386

A collection of SSNMR spectra on polymer blends, block copolymers, or polymeric latexes has been made available *via* the internet at http://www.mpipmainz.mpg.de/documents/aksp/spektrensammlung. 387

Employing CPMAS spectroscopy, the existence of immobile regions in natural rubber (cis-1,4-polyisoprene) have been shown. The CPMAS NMR spectrum of solid poly(γ -benzyl L-glutamate) (PBLG) has been measured at the slow spinning rate. The exact principal values of the ^{13}C CS tensor for the main-chain carbonyl carbons of PBLG have been obtained. SSNMR measurements have been carried out on poly(aspartic acid) sodium /poly(vinyl alcohol) blends over a wide range of temperatures. The effect of drawing on the structure and molecular orientation of polyamide fibers has been investigated by ^{13}C SSNMR. The molecular orientation in the fibres has been determined using a 2D rotor synchronised MAS experiment.

Poly(furfuryl alcohol) structures have been determined by ¹H and ¹³C NMR spectroscopy. The ¹H NMR spectrum indicated the predominance of linear sequences and the absence of -CH₂–O–CH₂- bonds in the polymer.³⁹² ¹³C-enriched polyethylene was subjected to γ-irradiation in the presence of air. Significant quantities of hydroperoxides have been detected in the 25 °C irradiated sample by MAS NMR spectroscopy.³⁹³ Solid structures of the compositionally fractionated bacterial poly(3-hydroxybutyric acid-co-3-hydroxypropionic acid)s have been studied by CPMAS.³⁹⁴ The miscibility of poly(epichlorohydrin)/poly(vinyl acetate) blends have been investigated by DSC and CPMAS.³⁹⁵ The spectral features in the CPMAS NMR of poly (1,1,6,6-tetraphenylhexadiyn diamine) (poly(THD)) have been compared with XRD.³⁹⁶ An analysis of the structure of syndiotactic copolymers of propene with 1-butene prepared with a single-centre metallocene-based catalyst in a whole range of comonomer composition by CPMAS spectroscopy has been presented.³⁹⁷

The cure reactions of phenylethynyl end-capped polyimides have been investigated using SSNMR. A ¹³C-labeled model compound (¹³C-PEPA-3,4'-ODA) and an imide oligomer (¹³C-PETI-5) have been synthesised and characterised.³⁹⁸

Styrene-crosslinked mixed polyesters derived from maleic anhydride, 2,2-di(4-hydroxypropoxyphenyl)propane, oligo(propylene oxide) and 1,2-propylene glycol have been investigated by SSNMR spectroscopy.³⁹⁹

The styrene-crosslinked mixed polyesters derived from maleic anhydride, 2,2-di-(4-hydroxypropoxyphenyl)propane and 1,2-propylene glycol have been studied by means of CPMAS. 400

In order to improve the stability of high-density polyethylene as a thermal energy storage medium, HDPE was cross-linked by electron beam irradiation. The observed increase of amorphous phase was attributed to a result of crystalline to amorphous phase transition of perturbed regions in the crystalline phase close to defect sites occupied by oxidation products or EG molecules. 401 The structure in the solid state of two optically active polyamides

obtained from 2,3-O-methylene-L-tartaric acid and linear α , ω -alkanediamines with 9 and 12 carbon atoms has been investigated. SSNMR analyses of the structure and chain conformation have been carried out for a main-chain thermotropic liquid crystalline polyether which was polymerised with 4,4'-dihydroxy-alpha-methylstilbene and 1,9-dibromononane. The phase-separated structure and molecular mobility for core-shell type polymer particles composed of poly(butyl acrylate) and poly(methyl methacrylate) have been examined by SSNMR. The observed The observed The observed shifts of poly(phenylacetylene) (PPA) in the solid state before and after *cis-trans* isomerisation have been investigated on the basis of NMR chemical shift calculations within AM1 for the *cis-transoidal* and deflected *trans-transoidal* forms. SSNMR spectra of (ethylene-vinyl alcohol) copolymers with various ethylene contents in the solid-state. The structure and variations in dynamic motions of three polyguanidines possessing different side-chains have been studied by CP MAS.

The solid state dynamics of three helical polyguanidines differing only in their stereochemistry has been investigated by CPMAS NMR. 408 Poly(2hydroxyethyl methacrylate) and poly(2-hydroxyethyl methacrylate) interpenetrated with 5% SiO₂ have been studied by CPMAS. 409 The structure and dynamic motions of the polycarbodimide has been studied by CPMAS NMR. 410 The structure and rigidity of the backbone of two polycarbodiimides as a function of the side-chains have been studied by CPMAS NMR. 411 The chain conformation and H-bonding in the crystalline and noncrystalline regions have been characterised for atactic poly(vinyl alcohol) films prepared under different conditions by CPMAS analyses developed recently. 412 Structure development in silica filled polyisoprene composites has been investigated by wide line pulsed NMR and HR SSNMR combined with transmission electron microscopy. 413 NMR spectroscopies have been employed to investigate the cure-acceleration effects of three carbonates propylene carbonate, sodium carbonate, and potassium carbonate on liquid and cured phenolformaldehyde resins.414

 ^{15}N - As demonstrated on different nitrogen-containing polysilanes and polysilazanes, the CP MAS technique spectra can be obtained in good quality and within acceptable measuring time without ^{15}N enrichment. 415

 ^{19}F - ^{19}F SSNMR using high-speed MAS has been applied to investigate the structural changes resulting from irradiation of poly(tetrafluoroethylene) (PTFE) with high-energy electrons under vacuum. All Radiation effects on molecular structure of PTFE have been studied by AS NMR spectroscopy. Samples used for the NMR studies were prepared by electron beam irradiation of PTFE with a wide range of irradiation doses in the molten state. All The SSNMR All F of poly(trifluoroethylene) study has concentrated on the detection of heterogeneities in the polymer. Transient oscillations in $^{1}H \rightarrow ^{13}C$ CP curves have been used in order to determine effective bond distances and, consequently, to detect motion of the polymer chain.

 ^{29}Si - Poly[(4-oligodimethylsiloxanyl)styrene]s were synthesised by radical polymerisation of the corresponding monomers. Quantitative evaluation of T_1

has been made at each silicon atom of the side-chains by ²⁹Si SSNMR. It was found that the closer the silicon atoms were to the main-chain, the more the motion was correlated to the gas permeation. Such local mobility of side chains behavior through the polymer membrane has been observed. ⁴¹⁹

 ^{31}P – A novel phosphorus-containing carbonaceous sorbent has been prepared by pyrolysis of phosphorylated phenol–formaldehyde resin. The surface properties of the material have been characterised by nitrogen adsorption-desorption isotherms and ^{31}P MAS.

Multinuclear – Symmetric diblock copolymers in the lamellar phase have been studied by NMR. ²H NMR spectra obtained in macroscopically oriented monodomains show an absolute frequency shift of a few ppm, which depends of the orientation of the sample with respect to the magnetic field. ⁴²¹

- **5.7 Glasses and Amorphous Solids**. ^{11}B ^{11}B MAS NMR has been applied to study the structural role of PbO in pseudoternary glasses Li₂O–PbO–B₂O₃, 422 $_{2}$ V₂O₅–B₂O₃ and $_{2}$ V₂O₅–B₂O₃–PbO glasses, 423 BaO–B₂O₃–SiO₂ and BaO–B₂O₃–TiO₂ glasses 424 and amorphous networks in the Si–B–N(–C) systems. 425
- ¹¹B, ¹⁷O MAS and TQ MAS ¹¹B and ¹⁷O NMR has been employed to characterise non-bridging oxygens in borate glasses. ⁴²⁶
- ¹¹B, ²⁹Si ¹¹B and ²⁹Si MAS NMR spectra have been used to investigate the spinodal phase separation of sodium borosilicate glasses. ⁴²⁷
- ^{11}B , ^{31}P ^{11}B and ^{31}P SSNMR have been used to study glasses SiO₂–B₂O₃–P₂O₅⁴²⁸ and V₂O₅–P₂O₅–B₂O₃.
- ¹⁷O MAS and static ¹⁷O NMR spectra, from amorphous germania and quartz-like GeO₂, have been used to estimate the range of ¹⁷O quadrupolar parameters in the glass for different bond angle distributions. ⁴³⁰ ¹⁷O MAS NMR data for crystalline NaAlO₂ and CaAl₂O₄ at 9.4 and 14.1 T, as model compounds for Al–O–Al sites in tetrahedral networks have been reported. ⁴³¹
- ¹⁹F ¹⁹F ultrafast MAS NMR spectra for Na and Ca silicate and aluminosilicate glasses have been presented. Several distinct fluoride ion sites are well resolved and can be assigned to various coordination environments based on clear similarities to crystalline model compounds.⁴³²
- ^{23}Na The spatial arrangements of Na cations for a series of sodium phosphate glasses, $x\mathrm{Na_2O}$ – $(100-x)\mathrm{P_2O_5}$ ($x \leq 55$), have been investigated using $^{23}\mathrm{Na}$ spin-echo NMR. The spin-echo decay rate has been related to the spatial proximity of neighboring Na nuclei. It increases non-linearly with higher sodium number density in the sodium phosphate glasses and provides a measure of the Na–Na extended range order. 433
- ^{23}Na , ^{71}Ga The cationic coordinations of phosphate based gallium sodium glasses in the system Na₂O–Ga₂O₃–P₂O₅ have been studied by 23 Na and 71 Ga MAS NMR in order to study the relationship between the structure and the chemical composition. 434
- ^{27}Al ^{27}Al MAS NMR techniques have been applied to study gibbsite, 435 lanthanum-aluminates of the composition $(1 x)Al_2O_3$. xLa_2O_3 (0 < x < x)

 $0.7)^{436}$ and the local structures of Sm and Al in Sm-doped aluminosilicate glasses. 437

²⁷Al,²⁹Si - Glass samples from the neapolitan yellow tuff,⁴³⁸ β-eucryptite (LiAlSiO₄),⁴³⁹ a swelling mica, Na₂Mg₃(Al₂Si₂)O₁₀F₂. xH₂O⁴⁴⁰ and Ag⁺/Na⁺ ion-exchanged R₂O-Al₂O₃-SiO₂ glasses⁴⁴¹ have been investigated using ²⁷Al and ²⁹Si MAS NMR techniques.

 $^{27}Al,^{31}P$ - The ^{31}P MAS NMR spectra have been analysed for the two phosphate glasses 442 that contain distinct metals (In or Ba), different amounts of PbO, and the same content of P_2O_5 and Al_2O_3 . The ^{31}P isotropic peaks at -3.8 or -4.8 ppm indicate that orthophosphate species are the dominant P sites. The ^{27}Al MAS NMR spectrum measured for the lead–barium–aluminum phosphate glass shows that the Al ions are in four-, five- and six-fold coordination with oxygen and that the Al(OP)₄ is the dominant moiety for the glass.

 ^{29}Si - The effect of paramagnetic impurity in the structure of sodium disilicate glass has been investigated using ^{29}Si MAS NMR. 443 The ^{29}Si chemical shifts and full widths at half maximum in Na₂O–2SiO₂–xMnO for 0 < x < 0.8 glasses have been measured. The large space varying magnetic field of the paramagnetic centres increases the line width and moves the chemical shift to a lower frequency, *i.e.* more shielded, with the increase of Mn²⁺. The T_1 relaxation time falls rapidly and the relaxation rate has been shown to be proportional with the concentration of MnO. ^{29}Si MAS NMR spectra have been reported for the monoclinic and triclinic crystalline phases of CaSi₂O₅, 444 two series of aluminosilicate glasses SiO₂–NaAlO₂ and SiO₂–CaAl₂O₄, 445 products of nitridation of silicon powder 446 and silanol-group minerals and hydrous aluminosilicate glasses. 447

²⁹Si, ³¹P - ²⁹Si and ³¹P MAS NMR measurements have been used to study the glass structure of ionically conductive Li₂S–SiS₂–Li₂O–P₂O₅ oxysulfide glasses, ⁴⁴⁸ and the influence of the CaO/MgO ratio on the structure of phase-separated glasses. ⁴⁴⁹

The local environment of phosphorus in aluminosilicate glasses xNa₂O-(1-x)Al₂O₃-2SiO₂ of variable Na/Al ratio has been investigated using TRAPDOR NMR. The studied glasses contain approximately 4 mol% P₂O₅. The short-range dipolar couplings of P atoms to Al and Na have been used to deduce the connectivities of PO₄ units to AlO₄ tetrahedra and/or Na by observing the effects on a ³¹P MAS echo spectrum caused by simultaneous irradiation of the ²⁷Al or ²³Na. In this way, different P environments have been identified. The observed resonances can be assigned to Na₃PO₄ and Na₄P₂O₇ units, as well as PO₄ tetrahedra coordinated to nAl atoms in the aluminosilicate framework (with n = 1-3). The results provide unambiguous evidence for the interaction of P with Al even in peralkaline compositions, confirming a recently proposed model describing the solution of phosphorus in aluminosilicate melts. ³¹P SSNMR techniques (mainly HR) have been applied to investigate the structures of binary lead phosphate glasses, ⁴⁵¹ extruded Ca(PO₃)₂ glass, ⁴⁵² zinc polyphosphate glasses, ⁴⁵³ GeAs thiophosphate glasses, ⁴⁵⁴ Na₂O-Ga₂O₃-P₂O₅ glasses, ⁴⁵⁵ Na₂O-Al₂O₃-P₂O₅ glasses and phosphorus oxynitride glasses.

 $^{113}\mathrm{Cd}$ - $^{113}\mathrm{Cd}$ SSNMR has been used to identify possible Cd^{2^+} adsorption sites in montmorillonite. 458

 ^{125}Te - ^{125}Te static and MAS NMR rechniques have been applied to study the structure of TeO_2 and M_2O – TeO_2 (M = Li, Na, K, Rb and Cs) glasses.

Multinuclear - Hydrous aluminosilicate glasses of composition NaAlSiO₁₈, NaAlSi₃O₈, NaAlSi₂O₆ and NaAlSiO₄ have been studied with ¹H MAS, ¹H/²⁷Al and ¹H/²³Na TRAPDOR NMR. ⁴⁶⁰ Two different environments for molecular water have been identified. Three ¹H OH resonances (1.5, 3.5 and 5-6 ppm) have been observed in all the glasses. The resonance at 1.5 ppm shows a large ¹H–²⁷Al dipolar coupling and has been assigned an Al(Q³)–OH group; the concentration of this species increases with increasing Al content in the glass. The resonance at 3.5 ppm has been assigned to Si(Q³)-OH units, on the basis of its chemical shift, proximity to Na and Al, and the change in the relative intensity of the three resonances, with varying Al/Si ratio. The resonance at 5–6 ppm has been assigned to a Q³-OH unit that is H-bonded to another oxygen atom. These assignments imply that the aluminosilicate framework undergoes depolymerisation as an outcome of water dissolution. A variety of ¹H, ¹⁷O, ²³Na, ²⁷Al and ²⁹Si NMR data consistent with the formation of Q_3 AlOH and SiOH groups upon dissolution of H_2O into aluminosilicate glasses have been reported. ⁴⁶¹ ²⁹Si single-pulse and ²⁹Si CP MAS data has been shown to present more direct evidence for the formation of Q³ Si species.

The 11 B, 29 Si, and 31 P MAS NMR spectra of $30\text{Na}_2\text{O}-5\text{SiO}_2-65[(1-x)\text{P}_2\text{O}_5-x\text{B}_2\text{O}_3]$ glasses have been examined. 462 The six-coordinated Si atoms have been observed in glasses with x < 0.25. The three-coordinated B atoms begin to appear in glasses with x > 0.50. The distribution curves derived from the deconvolution of the spectra by component signal of each phosphate and berate species agree with those calculated using species with different Na₂O/P₂O₅ ratios. The 11 B, 27 Al, 29 Si and 31 P MAS NMR have been used to study alkaline earth phosphosilicate and aluminoborosilicate glasses. 463 Five binary borosilicate glasses and 54 ternary sodium borosilicate glasses covering the glass-forming regions have been examined by 11 B, 23 Na and 29 Si MAS NMR. 464 Linear dependencies of the chemical shifts on compositional parameters have been observed.

5.8 Cements. - ²⁷Al - ²⁷Al MAS NMR has been used to study the substitution of Si by Al in calcium silicate hydrates (C–S–H), the main component of hydrated portland cement⁴⁶⁵ and to characterise the aluminum incorporation in calcium silicate hydrates (C–S–H) depending on their Ca/Si ratio. ⁴⁶⁶

 $^{27}Al,^{29}Si$ - ^{27}Al and ^{29}Si MAS NMR techniques have been applied to investigate the influence of cement constitution and temperature on chloride binding in cement paste, 467 the interaction between salts (NaCl, CsCl) and calcium silicate hydrates (C–S–H) 468 and electronic and structural properties a series of reduced-charge montmorillonites. 469

²⁹Si - ²⁹Si MAS NMR has been used to study the room-temperature

hydration of C₃S, β-C₂S and reactive β-C₂S mixed with different amounts of silica fume (SF). MMR has also been used to quantify the remaining starting materials and the resulting hydration products of different species. A broad peak assigned to Q³, increases in intensity with increased SF content. A Q⁴ species also appeared in the CP MAS spectra of samples with large SF additions after extended hydration and has been attributed to CP by adjacent hydroxylated Q³ species at the surface of amorphous SiO₂. ²⁹Si NMR has been used to characterise an amorphous silica by-product as a possible supplementary cementing material, mullite in silicoaluminous fly ash, to study kinetics of the hydration reactions in the cement paste to study with mechanochemically modified cement and to follow the hydration of metakaolin-blended ordinary Portland cement pastes.

5.9 Micro- and Meso-porous Solids. $-{}^{1}H$ - ${}^{1}H$ MAS spectra of perfluorotributylamine adsorbed on HZSM5 zeolites has been used for distinguishing the internal and external acidic sites in zeolites as well as for determining the position of silanols and some non-framework Al species. 475 Titanium aluminophosphate molecular sieves have been synthesised hydrothermally and their acidic properties characterised by FTIR and proton NMR. 476 The temperature dependence of the line width of ¹H MAS NMR reveals that the acidic protons in HZSM5 become mobile at temperatures as low as 370 K, though they are not mobile at 298 K. Substitution of a small part of the protons with Na⁺ or K⁺ ions sharply decreases the mobility as well as the catalytic activity of the remaining protons, suggesting that a long-range interaction exists among the acid sites. 477 MAS NMR and ESR spectroscopies have been employed to investigate Mo-modified HZSM5 catalysts prepared by impregnation. ⁴⁷⁸ The IR and ¹H MAS spectroscopy of zeolite H-β in interaction with CD₃CN has been described; two families of strong Si(OH)AI Bronsted sites have been clearly distinguished.479

¹*H*,²⁷*Al* - Sorption of oxygen in the pores of zeolite HY and ¹H MAS NMR has been used to determine which Bronsted acid sites are accessible to oxygen. Large increases in the ¹H SSB manifolds have been observed at low temperatures for the supercage protons that can directly interact with the oxygen molecules; a much smaller increase in SSB intensity is seen for the sodalite protons.⁴⁸⁰

 $^{6,7}Li$ - 6 Li and 7 Li MAS NMR spectra of the dehydrated zeolites LiX–1.0 [(SiAlO₄)₉₆Li₉₆] and LiX–1.25 [(Si₁₀₆Al₈₆O₃₈₄)Li₈₆] have been shown to contain three peaks belonging to cations in the different crystallographic sites. 481

 ^{11}B , ^{29}Si - Titanium-containing MEL zeolites (Ti-ZSM-11) have been prepared. XRD, FTIR, ^{11}B and ^{29}Si MAS NMR techniques have been used to characterise these materials. 482

¹³C - CPMAS evidence for arylmethyl carbocations formed from a series of ¹³C-labeled precursors adsorbed at room temperature on heat-pretreated zeolite HY has been reported and discussed. The reactivities of precursors of three binds of arylmethyl carbocations, have been compared, and evidence for

the chemical transformations of arylmethylium precursors on zeolite HY has been provided by analysing CDCl₃ extracts. Silica gel, dealuminated zeolite USY and cesium-exchanged zeolite Y were impregnated with alkali metal hydroxides or acetates followed by calcination. Surface groups formed on these samples were used as ¹³C NMR spectroscopic probes to investigate the formation of well dispersed basic guest compounds. Head

- ¹³C, ¹²⁹Xe A combination of ESR, CPMAS NMR, ¹²⁹Xe NMR, xenon adsorption, and TGA techniques have been employed to examine the preferred location of coke formation in the conversion of ethylbenzene under various conditions, such as reaction temperature, space velocity, and carrier gas to ethylbenzene molar ratio. ⁴⁸⁵
- ^{17}O In framework aluminosilicate materials (*e.g.*, feldspars, zeolites and many others), it is generally assumed that AlO₄ tetrahedra do not share corners, *i.e.*, that Al–O–Al oxygen sites are avoided when stoichiometry permits. This assumption plays a key role in models of thermodynamic properties and of reaction kinetics a new approach has been presented to directly test this assumption, based on ¹⁷O TQ MAS NMR.
- ¹⁷O, ²⁹Si HR ¹⁷O NMR spectra of siliceous ferrierite have been collected and the ²⁹Si and ¹⁷O isotropic chemical shifts and the EFGs of oxygen have been calculated from first principles. The theoretical ²⁹Si MAS NMR spectrum has been found to be in excellent quantitative agreement with the experimentally determined spectrum. However, theoretical predictions of the chemical shifts, QCCs and asymmetry parameters show only qualitative agreement with the experimental ¹⁷O NMR spectra obtained by DOR and MQ MAS as the spectra are much more complex (10 peaks within a shift range of less than 15 ppm, and the quadrupolar coupling constants only differ by 0.4 MHz) and hence higher accuracy is required from the shift calculations (>0.5 ppm), which is currently not possible. These findings also demonstrate the current limitations of the experimental techniques and show that no simple correlation appears to exist between the zeolite structure, such as the Si–O–Si bond angles or lengths, and the ¹⁷O NMR parameters. ⁴⁸⁶
- ¹⁹F Interactions between PFA molecules and MFI structure type zeolites have been studied by FTIR and ¹⁹F MAS NMR spectroscopies. In the purely siliceous ZSM5 sample, PFA molecules were physisorbed. In the acid samples, the interactions implicated the carbonyl group of the PFA molecules and the Bronsted acid sites of HZSM5. This interaction could be an H-bond or a protonation of the carbonyl group. The complementarity of the IR and ¹⁹F NMR spectroscopies has been shown. ⁴⁸⁷
- ¹⁹F, ²⁹Si Pentacoordinated silicon units, SiO₄/2F⁻, have been found by SSNMR experiments in various as-made high-silica zeolites (Beta, SSZ-23, ITQ-3, ITQ-4, ZSM-12, Silicalite-l) that have been prepared in the presence of fluoride ions as mineralising agents.²⁰
- ²³Na SOQ broadening has rendered the study of cation sites in microporous materials almost impossible until the recent advent of the 2D MQ NMR experiment. Strong evidence has been given for preferential potassium cation siting. ⁴⁸⁸ The framework structure of calcined and dehydrated cancri-

nite have been characterised by powder neutron diffraction and ²³Na NMR spectroscopy. QCC obtained by a simple point-charge model agree well with the simulation of the ²³Na MAS spectra. ⁴⁸⁹

²³Na, ²⁹Si - A variety of SSNMR techniques have been applied in order to assign resonances in the ²⁹Si and ²³Na NMR spectra of a new crystalline silicate Mu-11 to crystallographically distinct silicon and sodium sites, respectively. A preliminary assignment based on the electronegativities has been carried out and ²⁹Si CP experiments confirmed the assignments. The two crystallographically different sodium atoms have been resolved by ²³Na TQ MAS NMR, and an assignment for these two sites has been proposed. ⁴⁹⁰

²⁷Al 1D and 2D SSNMR techniques, in conjunction with elemental analyses, IR, and powder XRD, establish that high concentrations of Al have been incorporated into the aluminosilicate MCM-41 frameworks, with retention of mesoscopic order. ⁴⁹¹ The nature and concentration of the acid sites of MCM-41 material as a function of Si/Al ratio have been monitored by *in situ* IR using pyridine as a probe molecule. The thermal stability of aluminium in the framework of these materials has been studied using ²⁷Al MAS NMR spectroscopy. ⁴⁹² Aluminium-containing mesoporous molecular sieves (Al-MCM41) with different Al contents have been prepared and characterised by XRD and MAS NMR studies. ²⁷Al NMR studies reveal that the Al is present in Td coordination in the samples. ⁴⁹³ FTIR and multinuclear NMR spectroscopy and catalytic test reaction have been applied to investigate acid sites in mesoporous MCM-41 materials. ⁴⁹⁴ The distribution of aluminum in MCM-22 zeolite has been studied by ²⁷Al SSNMR. ⁴⁹⁵ Aluminosilicate mesoporous molecular sieves exhibiting excellent structural ordering have been examined by ²⁷Al MAS. ⁴⁹⁶

by ²⁷Al MAS. ⁴⁹⁶

²⁷Al, ²⁹Si IR, NMR, and NH₃-stepwise temperature-programmed desorption (STPD) have been used to study the acidity characteristics of dealuminated ZSM-12. ²⁷Al NMR data which indicate mostly the presence of tetrahedral sites for ZSM-12. ²⁹Si NMR data can be described by at least three distinctly different Si sites. ⁴⁹⁷ MnAPO-11, MnAPO-41 and MnSAPO-41, have been prepared and characterised by the techniques of XRD, SEM, TGA/DTA, ³¹P and ²⁷Al MAS NMR and ESR spectroscopy. ⁴⁹⁸ CXN zeolite, a natural zeolite in China, has been modified by ion exchange and calcination. The structural properties have been characterised by chemical analysis, powder XRD, TG/DTA, ²⁷Al and ²⁹Si MAS NMR and nitrogen adsorption. ⁴⁹⁹ Combined 1D and 2D MQ ²⁷Al NMR results together with ²⁹Si NMR data provide interesting information on the siting of Al in levyne zeolite. It is clearly shown that the distribution of Al is random in the structure, as the relative intensity of the two tetrahedral species is equal to two, corresponding to the ratio of T_1 and T_2 , the crystallographically different tetrahedral sites.⁵⁰⁰ Combination of ²⁷Al, ²⁹Si MAS and TQ MAS NMR provide interesting information on the siting of aluminium in levyne zeolites. It is clear that aluminium is randomly distributed in the LEV structure during synthesis. Indeed, the relative intensity of the two tetrahedral species is equal to two, which corresponds to the ratio between the crystallographically different tetrahedral sites T_1 and T_2 .⁵⁰¹ The application of ²⁷Al and ²⁹Si MAS NMR has provided a direct probe of alkali metal cluster formation and distribution in the alpha-cages of zeolite A.⁵⁰²

²⁷Al, ³¹P - Three different molecular sieves have been characterised using ³¹P and ²⁷Al MAS NMR spectroscopy and acidity measurement techniques. The synthesised solids were a silicoaluminophosphate sample, a chromium-substituted silicoaluminophosphate sample and a chromium-supported SAPO-11 sample. Significant differences were observed between the CrAPSO-11 MAS NMR spectra and the spectra for the other two solids. ⁵⁰³ A layered aluminophosphate, Mu-4, has been investigated by various SSNMR techniques. In particular, ²⁷Al-³¹P 2D heteronuclear correlation experiments were useful to evidence the P–Al connectivities present in this new layered aluminophosphate. ⁵⁰⁴ Highly crystalline aluminophosphate molecular sieve AlPO₄-41 has been synthesised and have been characterised by SSNMR spectroscopy using ²⁷Al and ³¹P MAS, 2D ²⁷Al SQ MAS, and ²⁷Al→³¹P CP MAS techniques. Both ³¹P MAS and ²⁷Al SQ-MAS spectra of the as-synthesised AlPO₄-41 exhibit several resonances, all of them being assigned to framework atoms. ⁵⁰⁵

²⁹Si - The sensitivity of 1D and 2D MAS NMR experiments to the local order of framework T atoms and energy-minimisation calculations for the geometrical analysis of the complete zeolite framework structure have been combined to provide a most detailed view of their structural properties. 506 29Si NMR and IR spectra have been measured for as-prepared and annealed porous silicon samples to characterise their structure. 507 A SAPO-11 molecular sieve was dealuminated to different Al content. Dealuminated samples have been characterised by catalytic transformation of butene, o-xylene and cumene, IR analysis of adsorbed pyridine and ³¹P and ²⁹Si-MAS-NMR. The reaction kinetics and mechanism have been discussed. ⁵⁰⁸ SAPO-11 and SAPO-31have been characterised ²⁹Si MAS NMR studies. ⁵⁰⁹ A high-quality Si-MCM-41 was prepared. The ²⁹Si MAS NMR results demonstrated that the water treatment promoted the wall polymerisation or local atomic arrangement. 510 The aluminum coordination state of the molecular sieve SAPO-37 has been studied by ²⁷Al MQ MAS NMR spectroscopy. Although the 1D ²⁷Al MAS NMR spectra of the aluminum sites show complex patterns, the 2D TQ MAS NMR spectra of SAPO-37 samples, submitted to different treatments, lead to the detection of four distinct framework Al species in the as-synthesised sample. By use of ¹H spin echo editing MAS NMR experiments, a new proton signal at 3.4 ppm has been observed in the calcined H-SAPO-37. By ¹H{²⁷Al} and ¹H{³¹P} spin echo double-resonance experiments, this new signal has been assigned to a kind of framework Al-OH hydroxyls caused by partially broken Al-O bonds. 511 The iii coordination state of molecular sieve SAPO-37 has been studied by ²⁷Al MQ MAS NMR spectroscopy, although the 1D ²⁷Al MAS NMR spectrum of the aluminum sites show a complex pattern, the TQ MAS NMR spectra of SAPO-37, submitted to different treatments, lead to the detection of four different Al species in the as-synthesised sample. 512 27 Al TQ MAS NMR spectroscopy has been applied to study the coordination state of the species giving the 30 ppm Al NMR signal in the ²⁷Al MAS NMR spectrum

of activated mordenite materials. From the ²⁷Al TQ MAS NMR measurements it is evident that the broad peak at 30 ppm in the ²⁷Al NMR spectrum of the mordenite calcined at high temperatures comes mainly from the distorted four-coordinated Al.⁵¹³ Alumina has been incorporated in the cavities of mordenite and has been assessed on the basis of the data of MAS ²⁷Al NMR measurements and powder XRD.⁵¹⁴ Crystalline galliosilicates with the β structure have been synthesised ²⁹Si MAS-NMR and. ⁷¹Ga NMR spectra confirm that Ga(IV) is the dominant species and that Ga(VI) formation depends, in part, on the thermal pretreatment applied to the crystals.⁵¹⁵

¹H, ¹³C, ¹⁵N - Multinuclear SSNMR has been applied to investigate the use of chloroform as a probe molecule to characterise the basic properties of zeolites. The characteristics of the ¹H signals of adsorbed chloroform are consistent with highly mobile molecules leading to an average chemical shift that reflects the interaction of the molecule with the host zeolite through H-bonding with basic framework oxygen atoms. The use of ¹³CHCl₃ has allowed to establish that the ¹³C chemical shift position is also a measure of framework basicity for zeolites X and Y. ⁵¹⁶

¹H, ²⁷Al, ²⁹Si - The thermal behaviors of five differently prepared samples (A-E) of the very-large-pore aluminophosphate molecular sieve VPI-5 have been investigated. ²⁷Al, ³¹P and ¹H MAS NMR experiments for the two samples yielded almost identical spectra. The ²⁷Al spectra confirmed that all Al were tetrahedral, the ¹H spectra showed that no water was present, and the ³¹P spectra contained seven peaks, indicating that the symmetry was much lower than the expected topochemical space group. 517 The Si/Al ratio of the framework and the number of defect sites in the framework of zeolites have been investigated by means of SSNMR, ¹H MAS NMR showed that the extent of dealumination increased with the number of Bronsted acid sites interacting with the zeolite framework and ²⁹Si MAS NMR showed that at the same time the number of defect sites in the samples increased.⁵¹⁸ Variations in the structure and acidity properties of HZSM-5 zeolites with reduction in crystal sizes down to nanoscale (less than 100 nm) have been investigated by XRD, TEM and SSNMR with a system capable of *in situ* sample pretreatment. As evidenced by a combination of ²⁷Al MAS, ²⁹Si MAS, CP MAS and ¹H MAS techniques. 519 The variations in structure and acidity on the internal and external surfaces of HY zeolites modified by MgO and SiO2 have been studied by MAS NMR, together with the selective adsorption of perfluorotributylamine. ²⁷Al and ²⁹Si MAS NMR spectra revealed that the modifications led to significant changes of the framework owing to the migration of some nonframework Si and Al into the framework in the course of the modifications. ¹H MAS NMR spectra showed that the modifications decreased the acidity of the zeolite surfaces. 520

⁷Li,²⁷Al,¹³³Cs - A study on the modification of the surface acidity of β-zeolite exchanged with Cs and Li has been carried out by means of XRD, ²⁷Al, ¹³³Cs and ⁶Li MAS. The ¹³³Cs and ⁶Li MAS technique suggested that Cs cations were located in accessible sites, while Li cations were inaccessible and possibly located in cavities within the channels network. ⁵²¹

²⁷Al, ²⁹Si, ³¹P - The hydrothermal transformation of silico-aluminophosphate gel with cyclohexylamine to SAPO-34 has been examined. The hydrothermal crystallisation products of the SAPO have been investigated by XRD, FTIR, nitrogen and water adsorption, thermogravimetric analysis, surface analysis and ²⁷Al, ³¹P and ²⁹Si MAS NMR. The ²⁷Al MAS NMR signal of tetrahedrally coordinated Al observed in the silico-aluminophosphate gel without the organic template was changed to octa-, penta- and tetrahedrally coordinated aluminium upon the addition of the cyclohexylamine template to the SAPO gel. After 3 h of hydrothermal treatment at 473 K however, the ²⁷Al MAS NMR signals of the octahedral and pentacoordinated aluminium were removed. This has also been confirmed by ³¹P and ²⁹Si MAS NMR. ⁵²²

²⁹Si, ²⁷Al, ¹¹³Cd, ²⁰⁷Pb - NMR studies of Pb- and Cd-exchanged LTA zeolites have been reported. ⁵²³

¹³C, ²³Na, ²⁷Al, ²⁹Si - Multinuclear MAS NMR techniques were used for investigation of surface reaction of Y-type zeolites with CFCs and HCFC. ⁵²⁴

 $^{27}Al,^{29}Si,^{23}Na,^{133}Cs$ - The NaY zeolites exchanged with other alkali cations have been characterised by HR SSNMR. The chemical shifts of the various Si(nAl) n = 0, 1, 2, 3 and 4 configurations show particular changes as a function of the alkali counter-cations. 525

²⁷Al, ²⁹Si, ⁷¹Ga - A wide range of sodalite framework materials, M₈[TT'O₄]₆X₂ where T = Al, Ga, Si, T' = Be, Al, Si, Ge, have been characterised using MAS NMR spectroscopy. Structural parameters, such as functions of the framework T–O–T' angle, correlate linearly with the determined chemical shift values and provide relationships, as a function of T', which will facilitate characterisation of more complex zeolitic compounds containing such species. ⁵²⁵ Gallioaluminosilicate hydrogels were prepared at different temperatures to yield crystals with the faujasite or gmelinite structure. This finding has been proved by ²⁷Al, ⁷¹Ga and ²⁹Si MAS NMR spectroscopic results. The ²⁹Si NMR spectra of samples exchanged are poorly resolved and their quantitative analysis indicates substantial loss of Al and Ga from the faujasite framework. Consistent with this interpretation, ²⁷Al MAS NMR spectra reveal large amounts of octahedrally coordinated species. Moreover, the ⁷¹Ga spectra show no evidence of tetrahedrally coordinated framework Ga. ⁵²⁶

²⁹Si, ⁷¹Ga - The hydrothermal transformation of galliosilicate hydrogels were prepared from colloidal silica and sodium gallate mixtures, yields crystals with the faujasite or natrolite structure. Raising the crystallisation temperature causes the formation of analcime crystals. ⁷¹Ga MAS NMR spectra have shown that in both GaY and H(Ga,La)Y, no extraframework Ga(VI) species are present. ⁵²⁷

5.10 Surface Science and Catalysis. – A VT isolated flow and large-volume MAS NMR probes for heterogeneous catalysis studies has been developed. 528

 ${}^{1}H$ - The chemisorbed state of hydrogen on partially reduced ${\rm Ag}^{+}$ - exchanged Y zeolite has been studied by means of ${}^{1}H$ MAS NMR spectroscopy. When AgY was reduced with hydrogen, a peak appeared at -0.1 ppm besides

peaks at 4.6 ppm and 4.0 ppm. The latter two peaks have been attributed to bridging hydroxyl groups in sodalite cages and supercages, respectively. The peak at -0.1 ppm has been ascribed to atomic hydrogen species adsorbed on cationic silver clusters. 529 The isomerisation of 2-methyl-2-pentene has been studied on boron phosphate catalysts with different P/B ratios. ¹H MAS NMR has been employed to provide supplementary evidence of the variation in acidity with composition. 530 CdS nanoparticles precipitated from aqueous solution have been studied by ¹H NMR. The nanoparticles were deliberately not capped by any surface termination agent. The samples had a porous structure. ¹H, ¹¹³Cd MAS NMR spectra revealed that there are three abundant proton species in nanoparticle samples prepared with an excess of Cd, having different chemical shifts: a relatively narrow peak due to OH groups and two broader lines resulting from adsorbed water molecules with different chemical environments. The exchange between different lines has been studied by 2D exchange MAS spectroscopy. The analysis of the ¹H-¹H elation spectra as a function of the mixing time led to the conclusion that the nanocrystalline surface is covered by clusters of water.⁵³¹ Substitution of the protons in 12tungstophosphoric acid by monovalent cations of the Groups 1B and 3B, in particular Ag⁺ and Tl⁺, respectively, produces high surface area microporous solids whose morphological properties and numbers of residual protons are dependent upon the relative amounts of the preparative reactants. ¹H MAS NMR and the isomerisation of 1-butene have been employed to demonstrate that both the numbers of protons and the distribution of the acidic strengths present. 532 Co-Nb(2)Q(5)-SiO₂ catalysts have been examined by ¹H MAS $NMR.^{533}$

 $^{1,2}H$ - The regioselective $^{1}H/^{2}H$ exchange taking place between isobutane and acidic OH groups of strong solid acids has been investigated both by *in situ* ^{1}H MAS NMR with perdeuteroisobutane and H-ZSM5. 534

¹H, ⁵¹V - A series of vanadia catalysts supported on sol-gel derived mixed oxide Al₂O₃-TiO₂ have been synthesised with a V₂O₅ varying content. The catalysts have been characterised by employing ⁵¹V, ²⁷Al, ¹H MAS NMR. In the calcined catalysts ⁵¹V NMR studies indicated the peaks corresponding isolated and distorted tetrahedral vanadia species at low V₂O₅ contents and octahedral vanadia species at high vanadia loadings. The ¹H MAS NMR studies showed the presence of terminal and bridged hydroxyl groups of alumina and titania. 535 A series of supported vanadia catalysts with different V₂O₅ contents were prepared using the ZrO₂–SiO₂ support. ⁵¹V NMR studies indicated the presence of tetrahedally coordinated vanadate species at lower vanadia contents and octahedral vanadyl species at higher V₂O₅ loadings. ¹H MAS NMR spectra showed peaks corresponding to hydroxyl groups of zirconia and silica. 536 Alumina-silica mixed oxide has been used as a support for dispersing and stabilising the active vanadia phase. The catalysts have been characterised employing ⁵¹V and ¹H MAS NMR. ⁵¹V SSNMR studies on the calcined catalysts showed the peaks corresponding to both tetrahedral and distorted octahedral vanadia species at low vanadia loadings and with an increase in V₂O₅ content, the ⁵¹V chemical shifts corresponding to amorphous

V₂O₅ like phases have been observed.⁵³⁷ A series of catalysts with varying vanadia contents have been characterised employing ⁵¹V, ¹H MAS NMR. ⁵¹V NMR studies indicated the presence of tetrahedral vanadate species at all the loadings. The ¹H MAS NMR studies showed the peaks corresponding to hydroxyl groups of alumina and zirconia. 538

²H - The effect of carbon modifications and oxygen surface groups on the hydrophobicity of activated carbons has been described. ²H SSNMR experiments showed that the presence of toluene decreases the mobility of water, either due to a stronger interaction with the surface sites or to an enhanced adsorption in the smallest pores.⁵³⁹

 ^{11}B - The acidity and surface structure of pure γ -alumina and a berated alumina (AB), containing a low amount of boria have been investigated by a variety of techniques. The coordination states of AB, and the distribution of hydroxyls on the surface, have been studied by 11B MAS NMR. Partially hydrated AB has trigonal boron on the surface, as found in B₂O₃, and a small part of the boron nuclei exhibit 11B resonances narrowed by exchange with water. In situ ¹³C NMR has been also used to study the acid/base strength. ⁵⁴⁰

¹¹B, ²⁷Al - Boria-alumina mixed oxides have been studied by MAS NMR. ⁵⁴¹

 ^{13}C - The temperature dependent effective catalytic pore size can be determined by the comparison of ¹³C MAS spectra of heterogeneously catalysed, shape selective reactions and data collected from GC analysis of the product stream of reactions under similar reaction conditions.⁵⁴³ Powder neutron diffraction and ¹³C MAS methods have been used in the structural parameters determinations of the NaX and NaY zeolites with chemisorbed methyl groups CD_3 or CH_3 . The mechanism of propane conversion into butanes over H-MFI as catalyst has been investigated using controlled atmosphere ¹³C MAS NMR spectroscopy. The labelled reactant was propane 2-¹³C. The nature of the primary labelled products has been found to depend on the propane partial pressure. 544

¹³C MAS NMR have been performed in situ to investigate the mechanism of n-hexane conversion over Pt/alumina, Pt/ceria and Pt/ceria-alumina composite oxides, prepared by laser assisted Pt deposition. n-Hexane conversion has been studied at 653 K. n-Hexane 1-13C was used as the labelled reactant. 545 13C NMR spectra and relaxation parameters $(T_1(^1\text{H}), T_1(^{13}\text{C}), T_{1p}(^1\text{H}), T_{\text{CH}})$ have been measured via CP MAS and DP MAS techniques as a function of acetone loading level in acetone/SiO₂ samples at 25 °C. $T_1(^{\bar{1}}H)$ and $T_{10}(^{\bar{1}}H)$ values have also been measured via ²⁹Si CP MAS experiments. Peak positions and relaxation parameters are averaged by rapid exchange between different acetone interaction sites on the surface. 546

¹³C, ¹⁹F - The adsorption of benzenoid aromatic compounds on porous silica has been studied by ¹³C and ¹⁹F NMR. Small chemical shifts between the resonances of methyl groups or fluorine substituents in the microcrystalline bulk material and the adsorbed species can be used to monitor the degree of adsorption.547

 ^{13}C , ^{29}Si - The molecular metallasiloxanes Mo((NBu)-Bu-t)₂(OSiMe₃)₂ and Ti(OSiMe₃)₄ have been studied by 13 C and 29 Si CP MAS NMR. 548 Meso-

porous titania–silica mixed oxides with covalently bound 3-chloropropyl, 3-acetoxypropyl, and *N*,*N*-dimethyl-3-aminopropyl groups have been characterised by ²⁹Si and ¹³C NMR. ²⁹Si MAS NMR measurements indicated covalent incorporation of the modifying group. ⁵⁴⁹ Titania-silica mixed oxides with covalently bound methyl or phenyl groups have been studied by ²⁹Si and ¹³C MAS NMR. ⁵⁴⁹

¹³C, ³¹P - ³¹P and ¹³C MAS NMR spectra have been used to characterise pure bisphosphonates and also bisphosphonates adsorbed on hydroxyapatite. The molar ratio of phosphonates adsorbed on hydroxyapatite determined by ³¹P spectra without CP is approximately two times larger for geminal bisphosphonates than for ol,w-bisphosphonates and phosphonoacetic acid. ¹³C CP MAS spectra of pure and adsorbed bisphosphonates recorded in two cases for identification of adsorbed compounds give additional information about the state of adsorbed compounds. ⁵⁵⁰

 ^{15}N - NaX and CaX zeolite samples were dehydrated under controlled conditions and $^{15}N_2$ was adsorbed on the zeolites. The water content has been determined by quantitative 1H -NMR. The gas and adsorbed nitrogen phases were fully characterised by ^{15}N NMR. The partition coefficients and relaxation times T_1 and T_2 of the N_2 phases were then studied as a function of temperature. ^{15}N -NMR measurements were performed under static and MAS conditions. Two different types of adsorbed nitrogen molecules were also found on the zeolites. 551

 ^{19}F - KF/alumina catalysts containing different amounts of KF have been characterised by ^{19}F MAS NMR to elucidate the catalytically active sites, whose appearance varies much with the pretreatment temperature. Although the main species containing F was K_3AIF_6 formed by the reaction of KF with alumina, which has been observed by both XRD and ^{19}F MAS NMR, it was not related to the formation of active sites. 552 Some reactions that control the dissolution of bayerite [β-Al(OH)₃] and boehmite [γ-AlOOH] have been identified by comparing the adsorption chemistry, the dissolution rates, and ^{19}F spectra of the reacting surfaces. The ^{19}F spectra of bayerite distinguish two sites for fluoride reaction that vary in relative concentration with the total adsorbate density. One resonance at -131 ppm has been assigned to fluoride bridges and the other resonance at -142 ppm has been assigned to fluoride at terminal sites. 553

²³Na,⁵¹V - Sodium-doped binary vanadia–titania catalysts have been studied using modern HR SSNMR techniques, including fast MAS and 2D TQ MAS NMR. NMR and powder XRD data brought together allow identification of sodium- and vanadium-containing species formed in the course of the preparation of the catalysts.⁵⁵⁴

²⁷Al - ²⁷Al MQ MAS has been used to characterise the oxide Mo-P-Al hydrotreating catalysts. ⁵⁵⁵ ²⁷Al NMR MAS has been used to study the surface aluminium compounds forming during the treatment of supported TiCl₄/MgCl₂ catalyst with organoaluminium compounds of various composition. ⁵⁵⁶ By means of ²⁷Al TQ MAS NMR and ²⁷Al{¹⁹F} WISE MAS NMR, three different Al–F sites on the surface of fluorinated γ-alumina have been detected.

Three 19 F resonances at 9, 20, and 33 ppm (from C_6F_6) correlated to 27 Al resonances in the octahedral range. While the positions of the maxima in the 27 Al dimension were ill-defined due to the inherently low efficiency of the 27 Al 19 F} CP MAS process, the centre of gravity of the lines shifted significantly upfield in that dimension with increasing wt.% F. At F contents above levels corresponding to the full fluorination of the γ -Al $_2$ O $_3$ surface, neoformation of an AlF $_3$. 3H $_2$ O phase was also evidenced 19 F resonance at -8 ppm and with an 27 Al resonance at -17 ppm. 557 27 Al 29 Si - An increasing demand for 2,6-dialkylnaphthalene has spurred

²⁷Al,²⁹Si - An increasing demand for 2,6-dialkylnaphthalene has spurred interest in shape-selective naphthalene alkylation. This process has been examined by other techniques including ²⁷Al and ²⁹Si MAS NMR.⁵⁵⁸

¹¹B,²⁷Al,³¹P - The synthesis of isoprene from the dehydration of 2-methylbutanal has been described using boron phosphate, aluminium phosphate and mixed boron/aluminium phosphates as catalysts. It has been investigated by ³¹P, ²⁷Al, and ¹¹B MAS NMR spectroscopy shows that B and Al are in the same lattice in these mixed phosphate catalysts.⁵⁵⁹

²⁹Si - A series of highly crystalline silicoaluminophosphates having the AFI topology (SAPO-5) have been synthesised with varying silicon. These have been studied by the ²⁹Si MAS NMR technique. ⁵⁶⁰ X-Ray amorphous ZnO nanoparticles homogeneously dispersed in a silica matrix were evidenced in ZnO-SiO2 nanocomposites obtained by a sol-gel method. Through a comparison of the ²⁹Si MAS NMR data of the nanocomposites and silica samples, obtained by the same method, it was possible to observe that reaction occurs between ZnO and silica on heating, which causes a depolymerisation of the host matrix with the formation of low condensation groups. ⁵⁶¹

³¹P - Zirconium-pillared layered phosphates were prepared from a-zirconium phosphate and zirconium phosphate phenylphosphonate by colloid manipulation method. IR and ³¹P MAS spectroscopic studies show that P-O-Zr linkages are formed after calcination as a result of this strong interaction. 562 The room temperature decompositions of the nerve agent simulant diisopropyl fluorophosphate sorbed on γ-alumina, polydivinylbenzene, and Ambergard, have been studied in situ using ³¹P MAS NMR. ⁵⁶³ Ruthenium complexes having bidentate phosphine ligands were incorporated into an amorphous silica matrix via chemical anchoring using a silylether bridge. The integrity of the complexes after immobilisation has been confirmed by CP MAS ³¹P NMR.⁵⁶⁴ Different compositions of $Ca_{10.5-x}Cu_x(PO_4)_7$ (0 $\leq x \leq 1$) and $Ca_{10-x/2}Na_xCu_{0.5}$ (PO₄)₇ (0 $\leq x \leq$ 1) belonging to the Whitlockite-type structure have been characterised. ³¹P MAS NMR investigations of Ca_{10.5}(PO₄)₇ and Ca₁₀Na(PO₄)₇ showed that the occupancy level of the Ca sites does not modify notably the symmetry of the (PO₄)³⁻ groups. ⁵⁶⁵ The heterogenisation of the zwitterionic Rh(I) catalysts (sulfos)Rh(cod) and (sul $fos)Rh(CO)_2$ [sulfos = $-O_3S(C_6H_4)CH_2C(CH_2PPh_2)_3$; cod = cycloocta-1,5diene] has been performed by controlled adsorption on partially dehydroxylated high surface area silica. Experimental evidence of the -SO₃···HOSiinteraction with silica has been obtained from CP MAS ³¹P NMR studies. ⁵⁶⁶ The hydroformylation of styrene over Rh/SiO₂ has been studied by FTIR and

³¹P CP MAS NMR. ⁵⁶⁷ A new family of vanadium phosphorus oxides (VPO) catalysts have been identified by XRD and ³¹P NMR. ³¹P NMR by spin echo mapping and ³¹P MAS NMR have confirmed an interaction of the VPO precursor with Nb and of the NbPO amorphous material with V.568 31P MAS NMR characterisation of zirconium phosphate/phosphonate (ZP) multilayer assemblies grown on SiO_x. The reaction of silica with excess POCl₃ and treatment with collidine results in both physisorbed and chemisorbed $H_xPO_{4(x-3)}$ being present at the SiO_x, surface was reported. The ³¹P NMR spectrum of zirconium phosphate grown from silica shows no residual Clcontaining species, indicating essentially complete hydrolysis. ⁵⁶⁹ The change in chemical shift of a chemisorbed probe molecule is an informative tool for the characterisation of solid acids. This work demonstrates that the ³¹P isotropic chemical shift of the probe triethylphosphine oxide (TEPO) can be used to identify the acidity of multiple acid sites on a surface. 570 The bonding of triethylphosphine oxide to the acid site of a surface has been shown to produce a systematic change in the ³¹P isotropic chemical shift that is proportional to the acid strength of the adsorption site.⁵⁷¹

⁵¹V - Vanadium–cerium oxide samples with different V/Ce atomic ratios have been characterised by XRD and ⁵¹V MAS NMR. ⁵¹V MAS NMR study has shown the presence of different V sites in solids. ⁵⁷² Wideline ⁵¹V SSNMR spectra of supported V₂O₅–WO₃/TiO₂ catalysts were obtained under ambient conditions. ⁵⁷³ Milling of V₂O₅ in a ball mill increased the surface area. After milling in a ball mill it has been characterised by the combination of wideline and MAS ⁵¹V NMR techniques together with theoretical simulations of NMR spectra. ⁵⁷⁴ The fresh catalyst V₂O₅–WO₃/TiO₂ and catalyst have been studied by the ⁵¹V SSNMR spectroscopy in static and MAS conditions. According to ⁵¹V NMR in both samples the majority of vanadium sites are in a distorted octahedral environment similar to that in V₂O₅. ⁵⁷²

¹H,²⁷Al,²⁹Si - The interaction between Mo species and a conventionally microsised and particularly nanosised HZSM-5 support has been studied by HR SSNMR techniques. As proved by ²⁷Al and ²⁹Si MAS as well as CP MAS NMR investigations, this interaction was so strong that the framework aluminum of both microsised and nanosised HZSM-5 zeolites could be extracted. With increasing Mo loading, more nonframework aluminum, resonanced at 30 ppm, appeared in the ²⁷Al MAS NMR spectrum of the Moloaded nanosized HZSM-5 catalyst.⁵⁷⁵

¹H, ²H, ³¹P - Spectroscopic techniques in controlled atmosphere, such as ¹H, ²H and ³¹P MAS and inelastic neutron scattering (INS), have been used to investigate the effect of dehydration on structural modifications and acidic properties of solid 12-tungstophosphoric acid H₃PW₁₂O₄₀ and its cesium salt Cs_{1.9}H_{1.1}PW₁₂O₄₀. MAS spectra have been recorded as a function of the degree of dehydration/rehydration and allowed to characterise the protonic species present. ⁵⁷⁶

5.11 Inorganic and Other Related Materials. – ¹H - ¹H MAS NMR at high magnetic fields and high spinning speeds provides a powerful means of

identifying the different proton sites in smectites and affects information on the octahedral nature.⁵⁷⁷ ¹H MAS NMR experiments have been used to characterise the non-acid protons of the anions in polycrystalline paratung-states by means of the measured isotropic chemical shift values. The investigation of various hydrates of ammonium paratungstate allows a direct proof of protons in NH₄ ions and in water molecules while protons of the anions are not detectable. However, for both the potassium and the sodium paratung-states ¹H MAS NMR investigations detected the protons of water molecules and the non-acid protons of the paratungstate anions. Additional ¹H broadline NMR experiments at 173 K support the interpretation of the results.⁵⁷⁸

 $^{6,7}Li$ - LiMnO₂ with orthorhombic structure was synthesised, a spectrum of solid-echo 1 H-NMR on γ-MnOOH became diminished, while a spectrum of solid-echo 7 Li-NMR emerged with three different kinds signals which is accompanied by SSB at around 37 ppm, 74 ppm and 1 ppm, respectively. 579 6 Li and 7 Li MAS NMR and in situ XRD have been used to study lithium manganate cathode materials (Li_xMn₂O₄, 0 < $x \le 1$) during and following charging and discharging. Only one major local environment has been observed by 6 Li MAS NMR from lithium in the tetrahedral sites of the spinel structure, the resonance shifting by no more than 8 ppm in this range (from its original position). 580 Samples of Li_xCoO₂ (0.5 x 1) have been prepared by electrochemical deintercalation from high temperature LiCoO₂ and are characterised by XRD, electrical measurements and 7 Li MAS NMR spectroscopy. 7 Li MAS NMR suggests that the metal—non-metal transition is the driving force for the existence of the biphasic domain. 581 7 Li MAS NMR studies have been performed for both the spinel compounds before and after Li⁺ intercalation. 582

 ^{13}C - Jahn-Teller distortion in the $\mathrm{C_{60}}^-$ ion has been studied by ^{13}C NMR spectroscopy in the solid samples $\mathrm{KC_{60}}(\mathrm{THF})$ and $\mathrm{KC_{60}}(\mathrm{THF})_x$ (0 < x < 1). Solvating the K⁺ ion by THF can change electronic states of $\mathrm{C_{60}}^-$ ion. 583 The microstructure of carbonaceous matter prepared from copper acetylide, by a coupling reaction promoted by air, hydrogen peroxide or $\mathrm{Cu(NH_3)_n}^{2+}$ oxidation has been studied by SSNMR, FT-IR and Raman spectroscopy. SSNMR provides additional evidence on the presence of small cumulenic moiety 'allenic or cumulenic carbyne (polyethylenediylidene). SSNMR in conjunction with Raman spectroscopy show sp³-hybridised carbon moieties known also as 'diamond-like carbon', formed by a crosslinking reaction of acetylenic carbyne chains; additionally sp²-hybridised carbon atoms have been detected and assigned to amorphous and graphitic carbon. 584

¹⁷O - Three- and five-quantum ¹⁷O MAS NMR experiments are used to resolve fully the three crystallographically distinct oxygen species in forsterite (Mg₂SiO₄). The chemical shift and quadrupolar parameters extracted from these spectra are compared with the literature values obtained using conventional ¹⁷O MAS and DAS NMR. ⁵⁸⁵ Powder XRD and electron single-crystal diffraction of crystals of Li₂TiOSiO₄ and Li₂TiOGeO₄ showed them to be tetragonal, space group. ¹⁷O NMR spectra of the two compounds, isotopically enriched with ¹⁷O, showed peaks due to the apical titanyl, Ti–O, and basal, bridging, Ti–O–Si or Ti–O–Ge, oxygen atoms of the title compounds. ⁵⁸⁶

 ^{23}Na - The structure of NASICON-type compounds, Na_{1+x}Sc_xTi_{2-x}(PO₄)₃ (0 $\leq x \leq$ 2), and the dynamics of Na⁺ have been investigated by 23 Na NMR spectroscopy. It was found that the 23 Na 1D and 2D MQ MAS spectra depend on the Na concentration, suggesting strongly that the Na⁺ ions are distributed between two crystallographically nonequivalent sites, one is a special position with axial symmetry, and the other a position of low symmetry. 587

²⁷Al - The kaolinite-mullite reaction process has been studied by SQ and TQ ²⁷Al MAS NMR. All materials have also been characterised by ²⁹Si MAS NMR and powder XRD. It has been shown that in order to record reliable ²⁷Al MAS NMR spectra it is important to use very fast sample spinning rates. The conflicting values previously reported in the literature for the four-, fiveand six-coordinated Al metakaolinite populations are due to the relatively modest and different MAS rates and magnetic fields used. TQ ²⁷Al MAS NMR provides hard evidence for the presence in metakolinite of distorted (and distributed) four-, five-, and six-coordinated Al local environments. 588 The structure of Bi₂Al₄O₉ has been refined using a combination of X-ray and HR neutron powder diffraction. Iterative simulation of the ²⁷Al SSNMR data confirms the presence of two Al sites, one octahedral and one tetrahedral, in an approximate 1:1 ratio. 589 Investigations on the hydrothermal formation and the crystal structure of nitrate cancrinite have been carried out in the system $Na_2O-xSiO_2-Al_2O_3-NaNO_3-H_2O$, 1 < x < 6. Structural investigations of nitrate cancrinite have been performed by IR and MAS NMR spectroscopy of the nuclei ²⁹Si, ²⁷Al and ²³Na. The results confirmed the alternating Si, Al ordering of the alumosilicate framework for a Si/Al ratio of 1.0 for all samples, independent of the Si/Al ratio of the educts as well as the temperature and pressure of crystallisation. A distribution of the quadrupolar interaction of the sodium cations caused by the enclathrated water molecules and motional effects can be suggested from the ²³Na MAS NMR spectrum. ⁵⁹⁰ A series of bentonite illite/smectite with a range of Fe content and illite composition has been analysed by means of FTIR, ²⁷Al MAS NMR and theoretical calculations. The calculated distributions have then been analysed in comparison with the experimental ²⁷Al NMR results. ⁵⁹¹

 29 Si - The microstructure of silicon carbide has been characterised by XRD and 29 Si SSNMR. 592

 ^{31}P - A ^{31}P SSNMR study of TiP₂O₇ has been reported. The combined constraints from 1D and 2D ^{31}P MAS NMR experiments probing throughbond P–O–P connectivities *via* homonuclear *J* coupling interactions, positively identify the cubic space group. 2D SQ-DQ correlation ^{31}P MAS NMR experiments subsequently lead to complete assignment of the distinct crystallographic P sites in the structure of TiP₂O₇ to the corresponding eight resolved resonances in ^{31}P MAS NMR spectra of TiP₂O₇, while ^{31}P ZQT and C7 DQT MAS NMR experiments confirm that TiP₂O₇ and the cubic phase of SiP₂O₇ are isostructural. The compound ^{593}P The compound ^{593}P The compound ^{593}P AlI⁴ and the novel compounds ^{593}P and ^{593}P and ^{593}P have been prepared in two different ways either from PI₃ and EI₃ or from ^{593}P MAS SSNMR, Raman and IR spectroscopy.

The ³¹P MAS SSNMR spectra are compared with NMR studies of related PI₄⁺ salts and alkylphosphorus tetraiodides. ⁵⁹⁴

¹¹³Cd - Semiconductor nanocrystals doped with transition metals has been studied ¹¹³Cd MAS spectra; the observed paramagnetic shift and decreased longitudinal relaxation time are consistent with Mn incorporated in the quantum dots.⁵⁹⁵

¹³C, ²⁹Si, ³¹P - The SSNMR characteristics of unsupported and silicasupported H-4[SiMo₁₂O₄₀] and H-3[PW₁₂O₄₀] heteropoly acids after (i) calcination or (ii) reaction with 2,3-butanediol are described. The supported and unsupported acids have been studied by ²⁹Si or ³¹P MAS NMR spectroscopy and the supported catalysts, which became steady-state in a 2,3-butanediol flow, have been probed by ¹³C CP MAS NMR measurements as well. The position of Si signal corresponding to the heteropoly acid in H₄[SiMo₁₂O₄₀]/SiO₂ could be distinguished from the Si signals of the support. The ³¹P NMR spectrum of H₃[PW₁₂O₄₀] revealed that the material contains two species: one is somewhat dehydroxylated, but fully protonated, the other has been further dehydrated and probably proton deficient too. ⁵⁹⁶

²³Na,³¹P - ²³Na and ³¹P MAS and powder XRD have been used in combination to study the structure of the model phosphate phases NaMg(PO₃)₃ and NaZn(PO₃)₃. The ²³Na and ³¹P SSNMR data confirm the similarities between the two structures, while the ²³Na also suggested three sodium sites in a 2:1:1 ratio, consistent with the proposed crystallographic model.⁵⁹⁷

 ^{27}Al , ^{29}Si - MAS NMR studies on building stones from historical monuments have been reported.

⁷Li, ²³Na - Two new non-metallic filled beta-manganese phases M₂Ga₆Te₁₀ (M: Li, Na) have been characterised by MAS NMR, including MQ NMR.

6 Molecular Dynamics Studies

6.1 Organic Solids: – Hydrogenated oligocyclopentadiene has been investigated by means of ^{1}H and ^{13}C NMR in the solid state. 598 The dynamic behavior has been investigated through the measurements of $T_{1\rho}(^{1}H)$ and $T_{1}(^{1}H)$, as well as $T_{1}(^{13}C)$, highlighting the presence of two major motional processes.

²H NMR techniques have been employed to study phenyl ring dynamics of enkephalin molecules and behaviour of bound solvents in the crystalline states, ⁵⁹⁹ the methyl group dynamics in aspirin and in the inclusion complex aspirin/β-cyclodextrin, ⁶⁰⁰ symmetry, disorder, and dynamics in solid crown ether complexes ⁶⁰¹ and the molecular motional modes in sucrose octapalmitate ⁶⁰²

Dynamics of the benzene and pyridine *p-tert*-butylcalix[4]arene inclusions has been studied using wideline ²H NMR lineshapes and ¹⁵N NMR CS tensor components. ⁶⁰³ The absence of short contacts rules out a C-H···N hydrogen bonding interaction of the host to the guest.

Dynamics of aromatic ring flipping in solid 4,4'-diphenoxydiphenylether has been studied by ¹³C time-reverse ODESSA NMR. ⁶⁰⁴

Conformational dynamics in the solid state has been studied by ¹³C techniques for *S*-alkyl-1,4-dithianium salts (a persistent solid degradation product of mustard), ⁶⁰⁵ triisopropyl(aryl)silanes, ⁶⁰⁶ triisopropylsilanes, ⁶⁰⁷ tris-(trimethylsilyl)methanes, ⁶⁰⁸ homochiral dicarvone ⁶⁰⁹ and 9-*tert*-butylanthracene ⁶¹⁰ Tautomerism and H-bonding of benzylideneanilines in the solid state has been studied by ¹³C CP MAS. ²⁴⁷ Molecular dynamics of C₆₀ in cocrystals of C₆₀ and *p*-bromocalix[4]arene propyl ether ⁶¹¹ and of ferrocene in deoxycholic acid/ferrocene inclusion compound have been studied by ¹³C NMR. ⁶¹²

¹⁵N CP MAS has been employed to study the kinetics of degenerate intermolecular triple proton and deuteron transfers in the cyclic trimers of ¹⁵N-labeled polycrystalline 4-nitropyrazole and 4-bromopyrazole⁶¹³ and the proton transfer thermodynamics and dynamics and the proton locations in polycrystalline ¹⁵N-labeled porphycene. ⁶¹⁴

The rate of ring inversion of fluorocyclohexane in its thiourea inclusion compound has been studied using ¹⁹F NMR, 2D EXSY and selective polarisation inversion, triple-channel ¹³C-{¹H, ¹⁹F} spectra. The superiority of the ¹⁹F measurements over the use of ¹³C spectra has been emphasised. ⁶¹⁵

6.2 Organometallics and Coordination Compounds. – H-migration and carbonyl mobility in $(NMe_4)_{4-x}[H_xNi_{12}(CO)_{21}] \cdot S$ (x = 1, $S = Me_2CO$; x = 2, S = 2THF) have been studied VT 1H and ^{13}C SSNMR.

Wideline 2H NMR has been used to probe the motion of the η^2 -dideuterium ligand in the solid state. 617

Representative examples of large-amplitude dynamic phenomena in various classes of solid metallorganic compounds and their study by VT ^{13}C CP MAS have been presented. Dynamics of monohaptocyclopentadienyl rings of hafnium and titanium tetracyclopentadienyl in the solid state has been investigated by 2D ^{13}C CP MAS. Dand 2D ^{13}C and ^{29}Si MAS NMR have been employed to demostrate that crystalline (Ph₃Si)Si(SiMe₃)₃ lacks all molecular symmetry and that internal $2\pi/3$ reorientation of all three crystallographically inequivalent SiMe₃ groups in the molecule occurs. 620

Modes of molecular reorientation in solid C(SnMe₃)₄ have been investigated by 1D and 2D ¹³C and ¹¹⁹Sn static and MAS NMR. ⁶²¹ The pseudo-five-fold disorder previously observed by single-crystal XRD has been shown to be dynamic. A dynamic-disorder model where each tin atom in a C(SnMe₃)₄ molecule occupies the twenty sites of a nearly perfect pentagonal dodecahedron with equal probability has been suggested.

Intermolecular H-bonds of the type N-H···N in crystals of imidazole and its 4-substituted and 4,5-disubstituted derivatives have been studied by ¹⁵N CP MAS NMR and an *ab initio* calculation. ⁶²²

6.3 Biological and Biomedical Applications. - ¹H T_1/T_{1p} and ¹³C CP MAS studies have been used to study molecular dynamics of poly(lactide-coglycolide) controlled pharmaceutical release polymers. ⁶²³ Results suggest that

around the broad glass transition at about 50 °C slow polymer backbone motions (on the 10 to 100 µs timescale) become significant.

Lipid dynamics in the annexin V – membrane complex has been studied by 2 H NMR. 624 Details of backbone motions in a crystalline protein have been derived from field-dependent 2 H NMR relaxation and lineshape analysis. 625 2 H NMR has also been applied to study dynamic properties of phospholipid model membranes 626 and mobility of the tyrosine side chain in Bombyx mori and Samia cynthia ricini silk. 627 13 C NMR studies of dynamic properties of 14 residue antifreeze glycopeptide have been reported. 628

Effects of hydration on molecular mobility in dormant Bacillus subtilis spore samples have been investigated by ³¹P and ¹³C SSNMR. ⁶²⁹ Superslow backbone dynamics of the protein barstar and the polypeptide polyglycine has been studied by time-reverse ODESSA technique that can detect reorientation of nuclei carrying anisotropic chemical shift tensors. ⁶³⁰ Experiments have been performed on carbonyl ¹³C in polyglycine and backbone ¹⁵N nuclei. Two exchange processes have been observed in the experiments: molecular reorientation and spin diffusion. It has been shown that the application of MAS exchange spectroscopy provides new opportunities in studying slow biomolecular dynamics that is important for the biological function of proteins.

6.4 Polymers. – Temperature dependent 2 H quadrupole echo lineshapes have been reported for polyamidoamine dendrimer salts. 631 The spectra are characteristic of amorphous materials undergoing broad glass transitions. The estimated average H-bond lengths are 2.2 Å. Three-fold rotation and asymmetric cone libration model has been used to explain the observed temperature dependent asymmetry parameters of terminal ND₃⁺ groups.

 13 C 2D exchange NMR has been applied to investigate dynamic alternation among three forms of H-bonds in the poly(acrylic acid)/poly(ethylene oxide). 632 The 13 C CP MAS signal for carboxyl carbon in the complex is split into three peaks corresponding to three forms of H-bonds: the complex form, the dimeric form and the free form. These three peaks coalesce into a single peak at temperatures above 346 K, showing that dynamic alternation of H-bonds occurs in the complex. 2D exchange NMR spectra directly show that the dissociation-association of H-bonds occurs at temperatures, higher than $T_{\rm g}$. The exchange rates are on the order of Hz and have a wide distribution. It was found that the H-bonding dynamics is coupled to the segmental motion of poly(acrylic acid) in the complex.

¹³C NMR has also been employed to study the local motions in arylaliphatic copolyamides by following the temperature dependence of ¹³C CSAs and ¹³C-¹H dipolar couplings. ⁶³³

6.5 Microporous Solids and Related Materials. – ¹H MAS tecniques have been used to study the dynamic properties of acidic protons in metallosilicate molecular sieves. ⁶³⁴ Results of the first pulsed field gradient NMR studies of H-diffusion in zeolites have been presented and compared with corresponding measurements by quasielastic neutron scattering. ⁶³⁵ The results of the two

techniques were in satisfactory agreement. The H-diffusivity is generally found to decrease with decreasing free apertures of the zeolite pore structure.

HR ¹H MAS NMR investigations (including ¹H NOESY NMR and ¹H-¹³C cross-relaxation studies) of the mobility of 1-butene and 1-pentene molecules adsorbed in zeolite NaX have been presented. ⁶³⁶ The mobility of the adsorbed species can be characterised by a fast libration motion of the molecules and an overall reorientation–translation motion with a correlation time which is comparable to the lifetime of the molecules in a cavity with respect to their jump into a neighbouring cavity.

 2 H NMR spectroscopy have been used to examine the structure and rotational dynamics of CD_3 groups pointing into the unidimensional channels of the β-polymorph of the hybrid organic/inorganic microporous solid aluminium methylphosphonate, $Al_2(CD_3PO_3)_3$.

1D and 2D exchange 13 C NMR techniques have been used to show that n-pentane translation in zeolite ZK-5 occurs by hopping between neighboring α and γ cages. 638 Owing to the structure of the ZK-5 pore network, these techniques give direct information about the translational part of molecular intercage motion, which represents the elementary step of sorbate self-diffusion.

6.6 Other Materials. – The dynamic behaviour of *n*-octylammonium ions intercalated into tetrasilicicfluormica has been investigated by measuring ^{1}H and ^{2}H NMR lineshape and $T_{1}(^{1}H)$ measurements. Uniaxial rotation of cations has been found to take place above ca. 200 K among non-equivalent potential wells made by clay sheets. 639

 ^2H and ^{15}N NMR has been used to measure the ^2H EFG and ^{15}N CS tensors in solid hydroxylammonium chloride and to study the NH $_3$ and OH dynamics. There was no evidence for OH reorientation up to 405 K, indicating a rather strong OH···Cl H-bond. The rotational dynamics of $^{24}\text{O}_6\text{S}$ and $^{24}\text{O}_7$ in the solid state have been studied by means of ^{31}P spin-echo and ^{31}P MAS NMR. All spectra have been simulated to confirm the type of the motion and to extract the time scales as a function of the temperature. Good agreement between experimental and theoretical data was obtained on the basis of a three-site jump model.

³¹P NMR measurements have been reported for solid Li₃P₇ under both nonspinning and MAS conditions. ⁶⁴² At low temperatures the spectra correspond to a static situation, exhibiting a superposition of three subspectra due to the epical, equatorial, and basal P atoms in the P₇-cage. Analysis of these spectra provided information on the CS tensors of the various P atoms. Their orientations in the molecular frame have been obtained from quantum mechanical calculations. At high temperatures a bond shift rearrangement model (similar to the Cope rearrangement process in bullvalene) has been used to interpret the lineshape changes.

Phase Transitions. – ${}^{I}H$ – ${}^{1}H$ T_{1} and $T_{1\rho}$ have been measured as a function of temperature in order to investigate order–disorder phase transitions in

layer crystals with a rotator phase, $(n\text{-}C_5H_{11}NH_3)_2ZnCl_4$ and $(n\text{-}C_{12}H_{25}NH_3)_2ZnCl_4$. The highest-temperature solid phase in both compounds was found to be the rotator phase, where rod-like cations perform uniaxial reorientations about the molecular long axes accompanied by conformational disordering and translational self-diffusion of the cations. These rotator phases have been shown to be quite analogous to those reported in n-alkylammonium chlorides. $(n\text{-}C_5H_{11}NH_3)_2ZnCl_4$ undergoes four structural phase transitions, while $Cl_2H_{25}NH_3)_2ZnCl_4$ exhibits a single transition above ca. 120 K. All of these transitions have been shown to be of order-disorder type.

¹H NMR measurements have been performed to study thermally induced rearrangement of H-bonded helices in 4-isopropylphenol below the melting point. ⁶⁴⁴ Energetically inequivalent Me group reorientations have been observed in differently prepared samples and this suggested that a high-temperature polymorph occurs below the transition point as a metastable phase. It has been proposed that thermally induced molecular rearrangements enable proton transfer in H-bonds and this stimulates protonic conduction.

 ^{13}C - ^{13}C MAS NMR studies have been untertaken to study the low temperature phase transition in fullerene C_{60} . At the phase transition near 262 K, the $T_1(^{13}C)$ in static samples of pure C_{60} decreases from 31 to 0.8 s as the temperature decreases by less than 8 K, while XRD patterns change little. Under MAS $T_1(^{13}C)$ decreases from 46 to 0.8 s over only 2 K, while the onset of the phase transition is lowered to 255 K. It has been suggested that uniaxial cage motion cannot average the CSA to the value observed in static samples, and nutation must be present.

The deoxycholic acid inclusion complex 2DCA:ferrocene has been shown to undergo a 'gradual' phase transition above ambient temperature, 'completed' by similar to 360 K. ⁶⁴⁶ The phase transition has been characterised by using XRD and ¹³C CP MAS. The transition, most clearly observed in the positions of the DCA molecules, is largely dominated by the dynamic behaviour of the guest ferrocene molecules.

¹³C, ¹⁵N - Polymorphism and phase transitions in 2-(2,4-dinitrobenzyl)-3-methylpyridine have been investigated using single-crystal ¹³C and ¹⁵N NMR. The spectral observations have been interpreted in terms of a distribution of mesoscopic domains within the crystal, differing in their local pressure. The presence of dynamic processes on time scales shorter than minutes has been excluded by both NMR measurements and tautomerisation kinetics.⁶⁴⁷

 ^{15}N - The phase transitions within the three phases of potassium nitrate (α-, β-, and γ-KNO₃) have been investigated in detail by VT ^{15}N MAS. The stability of the metastable γ-KNO₃ phase has been found to be highly influenced by the thermal history of the sample. The spectral appearance for the room-temperature α-KNO₃, phase has been found to change after excursions of the sample into the high-temperature β-KNO₃ phase.

 ^{29}Si - The different polymorphs of $Y_2Si_2O_7$ have been studied by ^{29}Si MAS NMR. ^{29}Si NMR spectra for the α , β , γ and δ polymorphs are consistent with accepted structural data from the point of view of the number of sites, the populations and the chemical shifts. 649

³¹P - The order-disorder ferrielectric-paraelectric transition in lamellar CuInP₂S₆ has been studied using VT ³¹P MAS NMR.⁶⁵⁰ Two centrebands have been observed at the lowest measured temperature while only one has been detected at the highest temperature. The former two represent the inequivalent positions for the P atoms of the P₂S₆ group which reflect the antiparallel displacements of the polar Cu and In sublattices in the ferrielectric phase. The latter corresponds to the appearance of a 2-fold axis through the P-P bond as the Cu ions undergo double-well hopping motions, and the In ions occupy on-centre sites in the paraelectric phase. The presence of the ferrielectric type resonance in the paraelectric regime has been ascribed to the nucleation of polar order, while the persistence of the paraelectric signal well below the transition temperature implies residual hopping motions occurring in the ferrielectric regime.

⁷¹Ga - The melting-freezing phase transition of gallium confined within Vycor glass has been studied by ⁷¹Ga NMR. A single broad ⁷¹Ga NMR line corresponding to melted gallium was observed in contrast to lineshapes found until now for liquid gallium in porous matrices. A difference between results obtained using the three methods was explained by formation of various confined solid gallium modifications. ⁶⁵¹

¹³³Cs - Crystalline Cs⁺(18-crown-6)₂e⁻ is a linear chain Heisenberg antiferromagnet undergoing a slow, irreversible transition above 230 K from a crystalline low temperature phase to a disordered Curie-Weiss paramagnetic high temperature (HT) phase. A 100 ppm diamagnetic shift of the ¹³³Cs MAS NMR peak accompanies this transition. The HT phase undergoes an additional first-order reversible transition upon cooling below 220 K accompanied by the observation of two peaks in the ¹³³Cs NMR spectrum. ⁶⁵²

8 In situ Reactions

8.1 Polymerisation. – The solid-state formation of a centrosymmetric cage dimeric 4-aryl-1,4-dihydropyridine has been monitored by ¹³C CP MAS NMR. ⁶⁵³ The spectra of the photodimerising derivatives show the changes in symmetry during the reaction and the reaction progress and clearly reflect conformational properties of the molecules. Starting from centrosymmetric pairs of monomeric molecules, dimerisation proceeds to non-symmetrical syndimers, that subsequently cyclise to centrosymmetric cage dimers.

The thermally induced solid-state polymerisation reactions in sodium chloroacetate and sodium bromoacetate, leading to poly(hydroxyacetic acid) (polyglycolide) and NaCl and NaBr, respectively, have been studied by isothermal *in situ* ²³Na and ¹³C MAS NMR with a time resolution of the order of 5 to 25 min. For sodium chloroacetate, there is no evidence for the involvement of intermediate phases during the reaction whereas this cannot be excluded for sodium bromoacetate. The mechanistic and kinetic information obtained from *in situ* solid-stale NMR investigations has been compared and contrasted with

information obtained from other $in \ situ$ probes of the polymerisation reactions in these materials. 654

8.2 Heterogeneous Catalysis. – An isolated flow MAS NMR probe have been developed to enable simultaneous observation of events occurring on a catalytic surface with characterisation of the effluent gas using an external analytical instrument. The probe uses ceramic ball bearings to support the rotor. The spinning and spectroscopic capabilities of the probe have been proven by obtaining a ¹³C CP MAS spectrum of hexamethylbenzene at 2 kHz. The flow capabilities of the probe have been demonstrated by observing methanol adsorption onto HZSM-5. The VT capabilities have been shown by monitoring the change in the ²⁰⁷Pb chemical shift of Pb(NO₃)₂ with temperature. Temperatures >300 °C have been achieved for the probe. The reaction of methanol to dimethyl ether on zeolite HZSM-5 has been used to demonstrate the ability of the probe to study heterogeneous catalysis reactions *in situ*. Under flow conditions only dimethyl ether was observed. In previous studies under sealed (*i.e.* batch) conditions, an equilibrium was observed between methanol and dimethyl ether.

A new technique has been introduced allowing simultaneous *in situ* MAS NMR investigations of hydrocarbon conversions on solids under flow conditions and on-line gas chromatography. The new *in situ* technique has demonstrated its advantage for a simultaneous investigation of compounds with a long residence time on the catalyst surface and of compounds rapidly leaving the catalyst surface. *In situ* ¹³C MAS NMR techniques have been employed to study the conversion of methanol to dimethyl ether on zeolite HZSM-5, the methanol-to-gasoline conversion, the formation of methyl-tert-butyl ether on zeolites HY, HBeta, HBeta/F and HZSM-5, the photocatalytic oxidation of ethanol over two TiO₂-based catalysts, the photocatalytic oxidation of ethanol over a TiO₂-coated optical microfiber catalys flowing propene polymerisation under the conditions of continuously flowing propene through a supported Ziegler catalyst.

References

- P. Hodgkinson and L. Emsley, Prog. Nucl. Magn. Reson. Spectrosc., 2000, 36, 201
- J. H. Kristensen, H. Bildsoe, H. J. Jakobsen and N. C. Nielsen, *Prog. Nucl. Magn. Reson. Spectrosc.*, 1999, 34, 1.
- 3 J. C. C. Chan, Concepts Magn. Reson., 1999, 11, 363.
- 4 O. N. Antzutkin, Prog. Nucl. Magn. Reson. Spectrosc., 1999, 35, 203.
- 5 M. E. Smith and E. R. H. van Eck, *Prog. Nucl. Magn. Reson. Spectrosc.*, 1999, **34**, 159.
- 6 A. Medek and L. Frydman, J. Brazilian Chem. Soc., 1999, 10, 263.
- P. R. Bodart, J. P. Amoureux, M. Pruski, A. Bailly and C. Fernandez, *Magn. Reson. Chem.*, 1999, 37, S69.

- 8 P. Granger, J. Hirschinger, K. Elbayed, C. Sizun, P. Kempgens, J. Raya, J. Rose and P. Braunstein, *J. Chim. Phys. Phys.-Chim. Biol.*, 1999, **96**, 1479.
- T. J. Bastow, Z. Naturforsch. Sect. a Phys. Sci., 2000, 55, 291.
- 10 Z. Wang and J. I. Fang, Chin. J. Anal. Chem., 2000, 28, 240.
- 11 A. M. Gil and C. P. Neto, Ann. Rep. NMR Spectrosc., 1999, 37, 75.
- 12 R. H. Atalla and D. L. Van der Hart, Solid State Nucl. Magn. Reson., 1999, 15, 1.
- 13 C. Glaubitz, Concepts Magn. Reson., 2000, 12, 137.
- 14 M. de Aguiar, A. L. Gemal and R. A. D. San Gil, *Quim. Nova*, 1999, 22, 553.
- 15 P. F. Mutolo, M. Witschas, G. Regelsky, J. Guenne and H. Eckert, J. Non-Cryst. Solids, 1999, 257, 63.
- 16 R. K. Brow, J. Non-Cryst. Solids, 2000, 263, 1.
- 17 B. C. Sales, L. A. Boatner and J. O. Ramey, *J. Non-Cryst. Solids*, 2000, **263**, 155.
- 18 H. L. Ren, Y. Yue and C. H. Ye, Chin. J. Inorg. Chem., 1999, 15, 151.
- 19 C. Jager, P. Hartmann, R. Witter and M. Braun, J. Non-Cryst. Solids, 2000, 263, 61.
- 20 H. Koller, G. Engelhardt and R. A. van Santen, Topics Catal., 1999, 9, 163.
- 21 J. M. Thomas, Angew. Chem. Int. Ed., 1999, 38, 3589.
- 22 J. J. Van der Klink, Adv. Catal., 2000, 44, 1.
- 23 T. Baba and Y. Ono, Ann. Rep. NMR Spectrosc., 1999, 38, 355.
- 24 L. F. Gladden, Topics Catal., 1999, 8, 87.
- 25 J. F. Haw, *Topics Catal.*, 1999, **8**, 81.
- 26 Ivanova, II, Colloids Surfaces A Physicochem. Eng. Aspects, 1999, 158, 189.
- 27 I. G. Richardson, Cement Concrete Composites, 2000, 22, 97.
- 28 S. Ando, R. K. Harris, G. A. Monti and S. A. Reinsberg, Magn. Reson. Chem., 1999, 37, 709.
- 29 S. Wi and L. Frydman, J. Chem. Phys., 2000, 112, 3248.
- 30 G. Valerio and A. Goursot, J. Phys. Chem. B, 1999, 103, 51.
- G. Valerio, A. Goursot, R. Vetrivel and D. R. Salahub, *Microporous Mesoporous Mater.*, 1999, 30, 111.
- 32 J. A. Tossell, Phys. Chem. Minerals, 1999, 27, 70.
- 33 P. Tekely, D. E. Demco, D. Canet and C. Malveau, *Chem. Phys. Lett.*, 1999, **309**, 101
- 34 A. Samoson and T. Anupold, Solid State Nucl. Magn. Reson., 2000, 15, 217.
- 35 J. R. Quine and T. A. Cross, *Concepts Magn. Reson.*, 2000, **12**, 71.
- 36 S. Ando, R. K. Harris and S. A. Reinsberg, *J. Magn. Reson.*, 1999, **141**, 91.
- 37 S. E. Ashbrook and S. Wimperis, *Mol. Phys.*, 2000, **98**, 1.
- 38 Y. Zhang, F. Deng, J. Q. Qiu and C. H. Ye, *Solid State Nucl. Magn. Reson.*, 2000, **15**, 209.
- 39 G. J. Boender, S. Vega and H. J. M. de Groot, J. Chem. Phys., 2000, 112, 1096.
- 40 C. Bonhomme and J. Livage, J. Phys. Chem. a, 1999, 103, 460.
- 41 J. H. Kristensen, G. L. Hoatson and R. L. Vold, J. Chem. Phys., 1999, 110, 4533.
- 42 T. T. P. Cheung, J. Phys. Chem. B, 1999, 103, 9423.
- 43 M. Ernst, H. Zimmermann and B. H. Meier, Chem. Phys. Lett., 2000, 317, 581.
- 44 C. Filip, S. Hafner, I. Schnell, D. E. Demco and H. W. Spiess, *J. Chem. Phys.*, 1999, 110, 423.
- 45 D. Hoffmann and C. Mayer, J. Chem. Phys., 2000, 112, 4242.
- 46 D. Rovnyak, M. Baldus and R. G. Griffin, J. Magn. Reson., 2000, 142, 145.
- 47 R. Tycko and A. E. Berger, J. Magn. Reson., 1999, 141, 141.
- 48 M. Hohwy, H. Bildsoe, H. J. Jakobsen and N. C. Nielsen, J. Magn. Reson., 1999, 136, 6.

- 49 H. C. Jarrell and D. Siminovitch, Chem. Phys. Lett., 1999, 314, 421.
- 50 C. Johnson, E. A. Moore and M. Mortimer, Chem. Commun., 2000, 791.
- 51 J. H. Kristensen, G. L. Hoatson and R. L. Vold, *Chem. Phys.*, 2000, **252**, 97.
- 52 V. Ladizhansky and S. Vega, *J. Chem. Phys.*, 2000, **112**, 7158.
- J. Leppert, B. Heise and R. Ramachandran, J. Magn. Reson., 1999, 139, 382.
- A. Marquez, J. F. Sanz and J. A. Odriozola, J. Non-Cryst. Solids, 2000, 263, 189.
- 55 C. Mayer, J. Magn. Reson., 1999, 139, 132.
- 56 E. A. Moore, C. Johnson, M. Mortimer and C. Wigglesworth, *Phys. Chem. Chem. Phys.*, 2000, **2**, 1325.
- N. Nakamura, H. Masui and T. Ueda, Z. Naturforschung Section A: Phys. Sci., 2000, 55, 315.
- 58 M. Nijman, M. Ernst, A. P. M. Kentgens and B. H. Meier, Mol. Phys., 2000, 98, 161
- 59 C. Ochsenfeld, *Phys. Chem. Chem. Phys.*, 2000, **2**, 2153.
- 60 D. Sakellariou, A. Lesage, P. Hodgkinson and L. Emsley, Chem. Phys. Lett., 2000, 319, 253.
- 61 Z. H. Gan, J. Magn. Reson., 2000, 143, 136.
- 62 G. Facey, D. Gusev, R. H. Morris, S. Macholl and G. Buntkowsky, *Phys. Chem. Chem. Phys.*, 2000, **2**, 935.
- 63 M. Baldus, D. Rovnyak and R. G. Griffin, J. Chem. Phys., 2000, 112, 5902.
- 64 R. Bohmer, T. Jorg, F. Qi and A. Titze, Chem. Phys. Lett., 2000, 316, 419.
- 65 N. M. da Silva, M. I. B. Tavares and E. O. Stejskal, *Macromolecules*, 2000, 33, 115.
- 66 E. R. de Azevedo, T. J. Bonagamba and K. Schmidt-Rohr, *J. Magn. Reson.*, 2000, **142**, 86.
- 67 M. J. Duer and A. J. Painter, Chem. Phys. Lett., 1999, 313, 763.
- 68 F. Fayon, C. Bessada, A. Douy and D. Massiot, *J. Magn. Reson.*, 1999, **137**, 116.
- 69 X. Feng, P. J. E. Verdegem, M. Eden, D. Sandstrom, Y. K. Lee, P. H. M. Bovee-Geurts, W. J. de Grip, J. Lugtenburg, H. J. M. de Groot and M. H. Levitt, *J. Biomol. NMR*, 2000, **16**, 1.
- 70 Z. H. Gan, J. Am. Chem. Soc., 2000, 122, 3242.
- 71 H. Geen, R. Graf, A. S. D. Heindrichs, B. S. Hickman, I. Schnell, H. W. Spiess and J. J. Titman, *J. Magn. Reson.*, 1999, **138**, 167.
- 72 A. Goldbourt, P. K. Madhu and S. Vega, Chem. Phys. Lett., 2000, 320, 448.
- 73 T. Gullion, J. Magn. Reson., 1999, 139, 402.
- 74 J. Z. Hu, J. K. Harper, C. Taylor, R. J. Pugmire and D. M. Grant, J. Magn. Reson., 2000, 142, 326.
- 75 C. Joo, U. W. Zwanziger and J. W. Zwanziger, Solid State Nucl. Magn. Reson., 2000, 16, 77.
- 76 A. P. M. Kentgens and R. Verhagen, *Chem. Phys. Lett.*, 1999, **300**, 435.
- 77 A. Khitrin and B. M. Fung, J. Chem. Phys., 2000, 112, 2392.
- 78 F. H. Larsen and N. C. Nielsen, *J. Phys. Chem. A*, 1999, **103**, 10825.
- 79 B. H. Wouters, T. H. Chen, A. M. Goossens, J. A. Martens and P. J. Grobet, *J. Phys. Chem. B*, 1999, **103**, 8093.
- 80 K. H. Lim and C. P. Grey, *Chem. Phys. Lett.*, 1999, **312**, 45.
- 81 W. E. Maas, A. Bielecki, M. Ziliox, F. H. Laukien and D. G. Cory, *J. Magn. Reson.*, 1999, **141**, 29.
- 82 T. M. Barbara and C. E. Bronnimann, J. Magn. Reson., 1999, 140, 285.
- P. K. Madhu, A. Goldbourt, L. Frydman and S. Vega, *Chem. Phys. Lett.*, 1999, 307, 41.

- 84 P. K. Madhu, A. Goldbourt, L. Frydman and S. Vega, J. Chem. Phys., 2000, 112, 2377.
- 85 E. Vinogradov, P. K. Madhu and S. Vega, Chem. Phys. Lett., 1999, 314, 443.
- 86 T. Mildner, M. E. Smith and R. Dupree, *Chem. Phys. Lett.*, 1999, **301**, 389.
- 87 T. Mildner, M. E. Smith and R. Dupree, *Chem. Phys. Lett.*, 1999, **306**, 297.
- 88 M. Pruski, A. Bailly, D. P. Lang, J. P. Amoureux and C. Fernandez, *Chem. Phys. Lett.*, 1999, 307, 35.
- 89 X. H. Qiu and P. A. Mirau, J. Magn. Reson., 2000, 142, 183.
- K. Saalwachter, R. Graf, D. E. Demco and H. W. Spiess, *J. Magn. Reson.*, 1999, 139, 287.
- 91 K. Saalwachter, R. Graf and H. W. Spiess, J. Magn. Reson., 1999, **140**, 471.
- 92 T. P. Spaniol, A. Kubo and T. Terao, Mol. Phys., 1999, 96, 827.
- 93 F. G. Vogt, J. M. Gibson, D. J. Aurentz, K. T. Mueller and A. J. Benesi, J. Magn. Reson., 2000, 143, 153.
- 94 T. Vosegaard, P. Florian, P. J. Grandinetti and D. Massiot, J. Magn. Reson., 2000, 143, 217.
- 95 M. Ernst, A. P. M. Kentgens and B. H. Meier, J. Magn. Reson., 1999, 138, 66.
- 96 S. Ganapathy, P. R. Rajamohanan, P. Ganguly, T. N. Venkatraman and A. Kumar, *J. Phys. Chem. A*, 2000, **104**, 2007.
- S. Massou, M. Tropis and A. Milon, *J. Chim. Phys. Physico-Chim. Biol.*, 1999, 96, 1595.
- 98 Y. Ishii and R. Tycko, J. Am. Chem. Soc., 2000, 122, 1443.
- 99 Y. Ishii and R. Tycko, J. Magn. Reson., 2000, 142, 199.
- 100 V. Munch, F. Taulelle, T. Loiseau, G. Ferey, A. K. Cheetham, S. Weigel and G. D. Stucky, *Magn. Reson. Chem.*, 1999, 37, S100.
- 101 F. M. Marassi, C. Ma, J. J. Gesell and S. J. Opella, Appl. Magn. Reson., 1999, 17, 433.
- 102 J. T. Rasmussen, M. Hohwy, H. J. Jakobsen and N. C. Nielsen, *Chem. Phys. Lett.*, 1999, 314, 239.
- 103 T. Asakura, M. Iwadate, M. Demura and M. P. Williamson, *Int. J. Biol. Macromol.*, 1999, 24, 167.
- 104 S. Dusold and A. Sebald, *Mol. Phys.*, 1998, **95**, 1237.
- 105 A. M. Orendt, J. C. Facelli, S. Bai, A. Rai, M. Gossett, L. T. Scott, J. Boerio-Goates, R. J. Pugmire and D. M. Grant, *J. Phys. Chem. A*, 2000, **104**, 149.
- 106 B. Bureau, G. Silly, J. Y. Buzare and J. Emery, *Chem. Phys.*, 1999, **249**, 89.
- B. Bureau, G. Silly, J. Y. Buzare and C. Jacoboni, J. Non-Cryst. Solids, 1999,
 110
- 108 N. Asakawa, D. Sato, M. Sakurai and Y. Inoue, J. Phys. Chem. A, 2000, 104, 2716.
- 109 M. J. T. Ditty and W. R. Power, Can. J. Chem.-Rev. Can. Chim., 1999, 77, 1951.
- 110 M. Gee, R. E. Wasylishen, K. Eichele, G. Wu, T. S. Cameron, F. Mathey and F. Laporte, *Can. J. Chem.-Rev. Can. Chim.*, 2000, **78**, 118.
- 111 M. Gee, R. E. Wasylishen, K. Eichele and J. F. Britten, J. Phys. Chem. A, 2000, 104, 4598.
- 112 T. Ida, K. Endo, M. Suhara, M. Kenmotsu, K. Honda, S. Kitagawa and H. Kawabe, *Bull. Chem. Soc. Jpn.*, 1999, **72**, 2061.
- 113 D. P. Tunstall, S. Patou, R. S. Liu and Y. H. Kao, *Mater. Res. Bull.*, 1999, **34**,
- 114 G. A. Bowmaker, R. K. Harris and D. C. Apperley, *Inorg. Chem.*, 1999, 38, 4956.
- 115 B. Bureau, G. Silly and J. Y. Buzare, Solid State Nucl. Magn. Reson., 1999, 15, 79.

- 116 S. P. Gabuda, S. G. Kozlova, V. V. Terskikh, C. Dybowski, G. Neue and D. L. Perry, Chem. Phys. Lett., 1999, 305, 353.
- 117 S. P. Gabuda, S. G. Kozlova, V. V. Terskikh, C. Dybowski, G. Neue and D. L. Perry, *Solid State Nucl. Magn. Reson.*, 1999, **15**, 103.
- 118 Y. S. Kye, S. Connolly, B. Herreros and G. S. Harbison, *Main Group Metal Chem.*, 1999, **22**, 373.
- 119 P. D. Zhao, S. Prasad, J. Huang, J. J. Fitzgerald and J. S. Shore, *J. Phys. Chem.* B, 1999, 103, 10617.
- 120 P. Kempgens, R. K. Harris and D. P. Thompson, Solid State Nucl. Magn. Reson., 1999, 15, 109.
- 121 T. M. Alam, S. Conzone, R. K. Brow and T. J. Boyle, J. Non-Cryst. Solids, 1999, 258, 140.
- 122 D. L. Bryce and R. E. Wasylishen, J. Phys. Chem. A, 1999, 103, 7364.
- 123 S. Dong, K. Yamada and G. Wu, Z. Naturforsch. Sect. A: Phys. Sci., 2000, 55, 21.
- 124 E. R. H. van Eck, M. E. Smith and S. C. Kohn, *Solid State Nucl. Magn. Reson.*, 1999, **15**, 181.
- 125 K. Yamauchi, S. Kuroki, I. Ando, T. Ozaki and A. Shoji, *Chem. Phys. Lett.*, 1999, 302, 331.
- 126 G. Engelhardt, A. P. M. Kentgens, H. Koller and A. Samoson, Solid State Nucl. Magn. Reson., 1999, 15, 171.
- 127 J. K. Jung, O. H. Han and S. H. Choh, *Solid State Nucl. Magn. Reson.*, 1999, **13**, 255
- 128 J. K. Jung, O. H. Han and S. H. Choh, Solid State Commun., 1999, 110, 547.
- 129 L. B. Alemany, S. Steuernagel, J. P. Amoureux, R. L. Callender and A. R. Barron, *Solid State Nucl. Magn. Reson.*, 1999, **14**, 1.
- 130 P. L. Bryant, C. R. Harwell, K. Wu, F. R. Fronczek, R. W. Hall and L. G. Butler, *J. Phys. Chem. A*, 1999, **103**, 5246.
- 131 H. Oka, Y. Tokunaga, T. Okada, H. Ohki and T. Okuda, Microporous Mesoporous Mater., 1999, 33, 257.
- 132 J. Skibsted and H. J. Jakobsen, Inorg. Chem., 1999, 38, 1806.
- 133 P. R. Bodart, Y. Dumazy, J. P. Amoureux and C. Fernandez, Magn. Reson. Chem., 1999, 37, 223.
- 134 U. G. Nielsen, H. J. Jakobsen and J. Skibsted, *Inorg. Chem.*, 2000, **39**, 2135.
- 135 S. Kroeker and R. E. Wasylishen, Can. J. Chem.-Rev. Can. Chim., 1999, 77, 1962.
- 136 S. Sham and G. Wu, Can. J. Chem.-Rev. Can. Chim., 1999, 77, 1782.
- B. Bureau, G. Silly, J. Y. Buzare, C. Legein and D. Massiot, Solid State Nucl. Magn. Reson., 1999, 15, 127.
- 138 D. Massiot, R. Revel, C. Magnenet and D. Bazin, *Solid State Nucl. Magn. Reson.*, 2000, **16**, 103.
- 139 A. C. de Dios, A. Walling, I. Cameron, C. I. Ratcliffe and J. A. Ripmeester, *J. Phys. Chem. A*, 2000, **104**, 908.
- 140 J. Skibsted and H. J. Jakobsen, J. Phys. Chem. A, 1999, 103, 7958.
- 141 T. Vosegaard, J. Skibsted, H. Bildsoe and H. J. Jakobsen, Solid State Nucl. Magn. Reson., 1999, 14, 203.
- 142 C. Hamard, O. Pena and M. LeFloch, Solid State Commun., 2000, 113, 489.
- 143 G. M. Bernard, K. Eichele, G. Wu, C. W. Kirby and R. E. Wasylishen, *Can. J. Chem.-Rev. Can. Chim.*, 2000, **78**, 614.
- 144 M. J. Potrzebowski, R. Katarzynski and W. Ciesielski, Magn. Reson. Chem., 1999, 37, 173.

- 145 J. Casanovas, G. Pacchioni and F. Illas, Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 1999, 68, 16.
- 146 D. Christendat, I. S. Butler, D. F. R. Gilson and F. G. Morin, Can. J. Chem.-Rev. Can. Chim., 1999, 77, 1892.
- 147 C. A. Fyfe, H. M. zu Altenschildesche and J. Skibsted, *Inorg. Chem.*, 1999, 38, 84
- 148 U. Gross and R. Wolff, J. Fluorine Chem., 1999, 94, 115.
- 149 A. Medek and L. Frydman, J. Magn. Reson., 1999, 138, 298.
- A. A. Shubin, O. B. Lapina and V. M. Bondareva, *Chem. Phys. Lett.*, 1999, 302, 341.
- 151 S. Hayashi, Chem. Phys. Lett., 1999, 299, 272.
- 152 S. Hayashi, Magn. Reson. Chem., 1999, 37, 843.
- 153 A. Rae, A.E. Aliev, J.E. Anderson, J.L. Castro, J. Ker, S. Parsons, M. Stchedroff, S. Thomas and A.B. Tabor, J. Chem. Soc., Perkin Trans. 1, 1999, 1933.
- 154 H. Heise, F. H. Kohler, E. B. Brouwer, R. K. Harris and S. Steuernagel, *Magn. Reson. Chem.*, 1999, 37, 573.
- 155 R. W. Schurko, R. E. Wasylishen, S. J. Moore, L. G. Marzilli and J. H. Nelson, *Can. J. Chem.-Rev. Can. Chim.*, 1999, 77, 1973.
- 156 G. Wu and K. Yamada, Chem. Phys. Lett., 1999, 313, 519.
- 157 T. Vosegaard, E. Hald, P. Daugaard and H. J. Jakobsen, Rev. Scientific Instruments, 1999, 70, 1771.
- 158 G. Buntkowsky, W. Hoffmann and H. M. Vieth, *Appl. Magn. Reson.*, 1999, 17, 489.
- 159 K. Kuwabara and F. Horii, Macromolecules, 1999, 32, 5600.
- 160 A. J. Woo, D. Y. Han and S. H. Cho, Bull. Korean Chem. Soc., 2000, 21, 233.
- 161 T. Vosegaard, J. Skibsted and H. J. Jakobsen, J. Phys. Chem. A, 1999, 103, 9144.
- 162 M. Bechmann, S. Dusold, H. Forster, U. Haeberlen, T. Lis, A. Sebald and M. Stumber, *Mol. Phys.*, 2000, **98**, 605.
- 163 N. Gelman and R. F. Code, Solid State Nucl. Magn. Reson., 1999, 14, 191.
- 164 S. J. Varner, R. L. Vold and G. L. Hoatson, J. Magn. Reson., 2000, 142, 229.
- 165 T. R. Bryar, C. J. Daughney and R. J. Knight, J. Magn. Reson., 2000, 142, 74.
- 166 P. Holstein, G. A. Monti and R. K. Harris, *Phys. Chem. Chem. Phys.*, 1999, 1, 3549.
- 167 W. G. Hu, H. Zimmermann and K. Schmidt-Rohr, Appl. Magn. Reson., 1999, 17, 197.
- 168 K. H. Lim and C. P. Grey, J. Chem. Phys., 2000, 112, 7490.
- 169 E. MacNamara, G. Fisher, J. Smith, C. V. Rice, S. J. Hwang and D. Raftery, J. Phys. Chem. B, 1999, 103, 1158.
- 170 R. H. Newman, Solid State Nucl. Magn. Reson., 1999, 15, 21.
- 171 W. Li, X. G. Lei, G. Lem, A. E. McDermott, N. J. Turro, N. M. Bottke and W. Adam, *Chem. Mater.*, 2000, 12, 731.
- 172 M. A. Eastman, J. Magn. Reson., 1999, 139, 98.
- 173 G. Wu, Chem. Phys. Lett., 2000, 322, 513.
- 174 L. S. Du, M. H. Levitt and C. P. Grey, J. Magn. Reson., 1999, 140, 242.
- 175 J. M. Egan, R. M. Wenslow and K. T. Mueller, J. Non-Cryst. Solids, 2000, 261, 115.
- 176 J. McManus, R. Kemp-Harper and S. Wimperis, *Chem. Phys. Lett.*, 1999, 311, 292.
- S. Prabakar, R. M. Wenslow and K. T. Mueller, *J. Non-Cryst. Solids*, 2000, 263, 82.

- 178 D. F. Shantz and R. F. Lobo, J. Phys. Chem. B, 1999, 103, 5920.
- 179 K. Takegoshi, S. Nakamura and T. Terao, Chem. Phys. Lett., 1999, 307, 295.
- 180 C. A. Fyfe and A. R. Lewis, *J. Phys. Chem. B*, 2000, **104**, 48.
- 181 C. A. Fyfe, A. R. Lewis and J. M. Chezeau, Can. J. Chem.-Rev. Can. Chim., 1999, 77, 1984.
- 182 R. Q. Fu, M. Cotten and T. A. Cross, J. Biomol. NMR, 2000, 16, 261.
- 183 P. Bertani, J. Raya, P. Reinheimer, R. Gougeon, L. Delmotte and J. Hirschinger, Solid State Nucl. Magn. Reson., 1999, 13, 219.
- 184 E. B. Brouwer, R. D. M. Gougeon, J. Hirschinger, K. A. Udachin, R. K. Harris and J. A. Ripmeester, *Phys. Chem. Chem. Phys.*, 1999, 1, 4043.
- J. M. Griffiths, A. E. Bennett, M. Engelhard, F. Siebert, J. Raap, J. Lugtenburg, J. Herzfeld and R. G. Griffin, *Biochemistry*, 2000, 39, 362.
- 186 I. Sack, S. Macholl, J. H. Fuhrhop and G. Buntkowsky, *Phys. Chem. Chem. Phys.*, 2000, 2, 1781.
- 187 S. Arata, H. Kurosu, S. Kuroki and I. Ando, *J. Mol. Struct.*, 1999, **513**, 133.
- 188 P. J. E. Verdegem, P. H. M. Bovee-Geurts, W. J. de Grip, J. Lugtenburg and H. J. M. de Groot, *Biochem.*, 1999, 38, 11316.
- 189 L. van Wullen and M. Kalwei, J. Magn. Reson., 1999, 139, 250.
- B. J. van Rossum, C. P. de Groot, V. Ladizhansky, S. Vega and H. J. M. de Groot, J. Am. Chem. Soc., 2000, 122, 3465.
- 191 S. Ravindranathan, X. L. Feng, T. Karlsson, G. Widmalm and M. H. Levitt, J. Am. Chem. Soc., 2000, 122, 1102.
- 192 F. Angeli, T. Charpentier, P. Faucon and J. C. Petit, J. Phys. Chem. B, 1999, 103, 10356.
- F. Angeli, J. M. Delaye, T. Charpentier, J. C. Petit, D. Ghaleb and P. Faucon, Chem. Phys. Lett., 2000, 320, 681.
- 194 C. P. Jaroniec, B. A. Tounge, C. M. Rienstra, J. Herzfeld and R. G. Griffin, J. Am. Chem. Soc., 1999, 121, 10237.
- 195 H. M. Kao, H. M. Liu, J. C. Jiang, S. H. Lin and C. P. Grey, J. Phys. Chem. B, 2000, 104, 4923.
- 196 A. L. Blumenfeld and J. J. Fripiat, Magn. Reson. Chem., 1999, 37, S118.
- 197 C. Magnenet, D. Massiot, I. Klur and J. P. Coutures, J. Mater. Sci., 2000, 35, 115.
- 198 E. Konstantin and B. M. Fung, J. Chem. Phys., 1999, 110, 7977.
- 199 S. Sham and G. Wu, *Inorg. Chem.*, 2000, **39**, 4.
- 200 D. Markgraber and G. Engelhardt, Chem. Phys. Lett., 1999, 300, 701.
- 201 Y. Takeuchi, M. Nishikawa, K. Tanaka, T. Takayama, M. Imanari, K. Deguchi, T. Fujito and Y. Sugisaka, *Chem. Commun.*, 2000, 687.
- 202 K. J. D. MacKenzie and R. H. Meinhold, Ceramics Int., 2000, 26, 87.
- 203 X. Helluy, J. Kummerlen, A. Sebald and O. J. Zogal, Solid State Nucl. Magn. Reson., 1999, 14, 225.
- 204 T. Harazono, R. Adachi, N. Kijima and T. Watanabe, Bull. Chem. Soc. Jpn., 1999, 72, 2655.
- J. J. Fitzgerald, S. Prasad, J. Huang and J. S. Shore, J. Am. Chem. Soc., 2000, 122, 2556.
- 206 L. P. Cruz, J. Rocha, J. D. P. de Jesus, J. M. Savariault and J. Galy, Solid State Nucl. Magn. Reson., 1999, 15, 153.
- 207 S. W. Ding and C. A. McDowell, Chem. Phys. Lett., 1999, 307, 215.
- 208 S. K. Lee and J. F. Stebbins, J. Phys. Chem. B, 2000, 104, 4091.
- 209 M. Drew, E. Orton, P. Krolikowski, J. M. Salvino and N. V. Kumar, J. Combinatorial Chem., 2000, 2, 8.

- 210 J. D. Mao, W. G. Hu, K. Schmidt-Rohr and B. S. Xing, Abstracts Papers Am. Chem. Soc., 1999, 218, 15.
- 211 M. Muller, G. Harvey and R. Prins, Microporous Mesoporous Mater., 2000, 34, 281.
- 212 S. K. Lausen, H. Lindgreen, H. J. Jakobsen and N. C. Nielsen, *Am. Mineral.* 1999, **84**, 1433.
- 213 V. Eulry, P. Tekely, F. Humbert, D. Canet and J. Marcilloux, *Polym.*, 2000, 41, 3405
- 214 N. Zumbulyadis, B. Antalek, W. Windig, R. P. Scaringe, A. M. Lanzafame, T. Blanton and M. Helber, *J. Am. Chem. Soc.*, 1999, **121**, 11554.
- 215 M. T. Zell, B. E. Padden, D. J. W. Grant, M. C. Chapeau, I. Prakash and E. J. Munson, *J. Am. Chem. Soc.*, 1999, **121**, 1372.
- 216 A. M. Gil, M. H. Lopes, C. P. Neto and J. Rocha, *Solid State Nucl. Magn. Reson.*, 1999, 15, 59.
- 217 G. Grobner, C. Glaubitz and A. Watts, J. Magn. Reson., 1999, 141, 335.
- 218 A. McDermott, T. Polenova, A. Bockmann, K. W. Zilm, E. K. Paulsen, R. W. Martin and G. T. Montelione, *J. Biomol. NMR*, 2000, 16, 209.
- 219 D. McElheny, E. DeVita and L. Frydman, J. Magn. Reson., 2000, 143, 321.
- F. Taulelle, M. Pruski, J. P. Amoureux, D. Lang, A. Bailly, C. Huguenard, M. Haouas, C. Gerardin, T. Loiseau and G. Ferey, J. Am. Chem. Soc., 1999, 121, 12148.
- 221 F. Taulelle, C. Gerardin, M. Haouas, C. Huguenard, V. Munch, T. Loiseau and G. Ferey, J. Fluorine Chem., 2000, 101, 269.
- 222 S. W. Ding and C. A. McDowell, Chem. Phys. Lett., 2000, 320, 316.
- 223 T. Takahashi, H. Kawashima, H. Sugisawa and T. Baba, Solid State Nucl. Magn. Reson., 1999, 15, 119.
- 224 B. Langer, L. Schnell, H. W. Spiess and A. R. Grimmer, J. Magn. Reson., 1999, 138, 182.
- 225 I. Alkorta, J. Elguero, B. Donnadieu, M. Etienne, J. Jaffart, D. Schagen and H. H. Limbach, New J. Chem., 1999, 23, 1231.
- 226 S. P. Brown, I. Schnell, J. D. Brand, K. Mullen and H. W. Spiess, J. Am. Chem. Soc., 1999, 121, 6712.
- 227 S. P. Brown, I. Schnell, J. D. Brand, K. Mullen and H. W. Spiess, J. Mol. Struct., 2000, 521, 179.
- 228 S. P. Brown, I. Schnell, J. D. Brand, K. Mullen and H. W. Spiess, *Phys. Chem. Chem. Phys.*, 2000, 2, 1735.
- 229 G. Maruta, S. Takeda, A. Yamaguchi, T. Okuno, K. Awaga and K. Yamaguchi, Mol. Crystals Liquid Crystals Sci. Technol. Section A - Mol. Crystals Liquid Crystals, 1999, 334, 295.
- 230 H. Heise, F. H. Kohler, F. Mota, J. J. Novoa and J. Veciana, *J. Am. Chem. Soc.*, 1999, **121**, 9659.
- V. Ramamoorthy, C. Meenakshi, S. Muthusubramanian and S. Sivasubramanian, J. Inclusion Phenomena Macrocyclic Chem., 2000, 36, 425.
- 232 E. Redenti, M. Zanol, P. Ventura, G. Fronza, A. Comotti, P. Taddei and A. Bertoluzza, *Biospectroscopy*, 1999, **5**, 243.
- 233 I. Yamaguchi, H. Ishii, K. Osakada, T. Yamamoto and S. Fukuzawa, *Bull. Chem. Soc. Jpn.*, 1999, **72**, 1541.
- 234 I. Wawer, M. Weychert, J. Klimkiewicz, B. Piekarska-Bartoszewicz and A. Temeriusz, Magn. Reson. Chem., 1999, 37, 189.
- 235 A. Szelejelska-Wozniakowska, Z. Chilmonczyk, A. Les, J. Cybulski and I. Wawer, Solid State Nucl. Magn. Reson., 1999, 14, 59.

- 236 M. J. Potrzebowski, C. Schneider and P. Tekely, *Chem. Phys. Lett.*, 1999, 313, 569.
- 237 K. Wozniak, W. Kolodziejski, R. Anulewicz, D. Pawlak, K. Jackowski, T. Dziembowska and Z. Rozwadowski, J. Mol. Struct., 1999, 478, 267.
- 238 M. Pietraszkiewicz, O. Pietraszkiewicz, W. Kolodziejski, K. Wozniak, N. Feeder, F. Benevelli and J. Klinowski, J. Phys. Chem. B, 2000, 104, 1921.
- 239 W. Kolodziejski and J. Klinowski, Chem. Phys. Lett., 1999, 303, 183.
- 240 A. Benesi, R. Bertermann, H. Forster, M. Heubes, L. M. Jackman, T. Koritsanszky, P. Luger, A. Mayer, H. Quast, M. Seefelder and D. Zobel, J. Am. Chem. Soc., 2000, 122, 4455.
- 241 G. D. Enright, C. I. Ratcliffe and J. A. Ripmeester, Mol. Phys., 1999, 97, 1193.
- 242 G. Fischer and E. Dormann, Synth. Metals, 1999, 103, 2172.
- 243 R. Glaser, D. Shiftan and M. Drouin, J. Org. Chem., 1999, **64**, 9217.
- 244 R. Glaser, D. Shiftan and M. Drouin, Can. J. Chem.-Rev. Can. Chim., 2000, 78, 212.
- 245 F. Herold, D. Maciejewska and I. Wolska, J. Phys. Org. Chem., 2000, 13, 213.
- 246 H. Serrano-Gonzalez, K. D. M. Harris, C. C. Wilson, A. E. Aliev, S. J. Kitchin, B. M. Kariuki, M. Bach-Verges, C. Glidewell, E. J. MacLean and W. W. Kagunya, J. Phys. Chem., B, 1999, 103, 6215.
- 247 D. Maciejewska, J. Mol. Struct., 1999, 478, 121.
- 248 D. Maciejewska, D. Pawlak and V. Koleva, J. Phys. Org. Chem., 1999, 12, 875.
- 249 M. M. Garcia, M. I. C. Uribe, E. B. Palacios, F. L. Ochoa, A. Toscano, J. A. Cogordan, S. Rios and R. Cruz-Almanza, *Tetrahedron*, 1999, 55, 6019.
- 250 A. W. Marsman, C. A. van Walree, R. W. A. Havenith, L. W. Jenneskens, M. Lutz, A. L. Spek, E. T. G. Lutz and J. H. van der Maas, J. Chem. Soc. Perkin Trans. 2, 2000, 501.
- 251 A. Comotti, R. Simonutti, S. Stramare and P. Sozzani, *Nanotechnology*, 1999, 10, 70.
- 252 V. Bertolasi, P. Gilli, V. Ferretti, G. Gilli and C. Fernandez-Castano, Acta Crystallogr., Sect. B: Struct. Sci., 1999, 55, 985.
- 253 B. S. Hickman, M. Mascal, J. J. Titman and I. G. Wood, J. Am. Chem. Soc., 1999, 121, 11486.
- 254 R. K. Harris and L. A. Crowe, J. Chem. Soc. Dalton Trans., 1999, 4315.
- 255 T. Marek, M. Bokor, G. Lasanda, K. Tompa, L. Parkanyi and J. Buschmann, J. Phys. Chem. Solids, 2000, 61, 621.
- 256 T. Ueda and N. Nakamura, Z. Naturforsch. Section A: Phys. Sci., 2000, 55, 362.
- N. Ueyama, Y. Yamada, H. Kozuki and T. Okamura, Kobunshi Ronbunshu, 2000, 57, 228.
- 258 J. Rohovec, M. Kyvala, P. Vojtisek, P. Hermann and I. Lukes, Eur. J. Inorg. Chem., 2000, 195.
- O. Reckeweg, A. Baumaun, H. A. Mayer, J. Glaser and H. J. Meyer, Z. Anorg Allg. Chem., 1999, 625, 1686.
- 260 F. Cataldo, Polyhedron, 2000, 19, 681.
- 261 G. W. Buchanan, A. B. Driega and G. P. A. Yap, Can. J. Chem.-Rev. Can. Chim., 2000, 78, 316.
- 262 A. V. Ivanov, V. I. Mitrofanova, M. Kritikos and O. N. Antzutkin, *Polyhedron*, 1999, 18, 2069.
- A. V. Ivanov, W. Forsling, O. N. Antsutkin, M. Kritikos, T. A. Rodina and I. A. Lutsenko, *Doklady Akademii Nauk*, 1999, **366**, 643.

- 264 A. V. Ivanov, W. Forsling, M. Kritikos, O. N. Antsutkin and E. V. Novikova, Dokl. Akad. Nauk, 1999, 369, 64.
- 265 A. V. Ivanov, V. Forshling, M. Kritikos and O. N. Antsutkin, Russ. J. Coord. Chem., 2000, 26, 53.
- 266 E. Szlyk, A. Grodzicki, L. Pazderski, A. Wojtczak, J. Chatlas, G. Wrzeszcz, J. Sitkowski and B. Kamienski, J. Chem. Soc. Dalton Trans., 2000, 867.
- 267 M. G. B. Drew, D. Farrell, G. G. Morgan, V. McKee and J. Nelson, *J. Chem. Soc. Dalton Trans.*, 2000, 9, 1513.
- 268 A. Adima, J. J. E. Moreau and M. W. C. Man, *Chirality*, 2000, **12**, 411.
- 269 G. Zahn, G. Grossmann, D. Scheller and O. L. Malkina, Z. Anorg. Allg. Chem., 2000, 626, 524.
- 270 E. Scolan, C. Magnenet, D. Massiot and C. Sanchez, *J. Mater. Chem.*, 1999, 9, 2467
- 271 M. Arca, A. Garau, F. A. Devillanova, F. Isaia, V. Lippolis and G. Verani, Z. Anorg. Allg. Chem., 1999, 625, 517.
- 272 F. Asaro, R. Gobetto, L. Liguori and G. Pellizer, *Chem. Phys. Lett.*, 1999, 300, 414.
- 273 W. Bauer, J. Ellermann, M. Dotzler, D. Pohl, F. W. Heinemann and M. Moll, Z. Anorg. Allg. Chem., 2000, 626, 574.
- 274 G. A. Bowmaker, E. N. de Silva, P. C. Healy, B. W. Skelton and A. H. White, J. Chem. Soc. Dalton Trans., 1999, 901.
- 275 G. A. Bowmaker, Effendy, J. V. Hanna, P. C. Healy, J. C. Reid, C. E. F. Rickard and A. H. White, J. Chem. Soc. Dalton Trans., 2000, 753.
- 276 G. A. Bowmaker, C. L. Brown, R. D. Hart, P. C. Healy, C. E. F. Rickard and A. H. White, J. Chem. Soc. Dalton Trans., 1999, 881.
- 277 S. S. Amin, K. Cryer, B. Y. Zhang, S. K. Dutta, S. S. Eaton, O. P. Anderson, S. M. Miller, B. A. Reul, S. M. Brichard and D. C. Crans, *Inorg. Chem.*, 2000, **39**, 406.
- 278 S. W. Ng, J. M. Hook and M. Gielen, *Main Group Metal Chem.*, 1999, 22, 649.
- 279 B. C. Ahvazi and D. S. Argyropoulos, Solid State Nucl. Magn. Reson., 1999, 15, 49.
- 280 S. Hediger, L. Emsley and M. Fischer, Carbohydr. Res., 1999, 322, 102.
- 281 X. Bibollet, N. Bosc, M. Matulova, A. M. Delort, G. Gaudet and E. Forano, *J. Biotechnol.*, 2000, 77, 37.
- 282 R. E. Stark, B. Yan, A. K. Ray, Z. Chen, X. Fang and J. R. Garbow, Solid State Nucl. Magn. Reson., 2000, 16, 37.
- 283 I. C. Baianu, P. I. Yakubu and E. Ozu, *Macromol. Symp.*, 1999, **140**, 187.
- 284 R. Meder, R. A. Franich and P. T. Callaghan, Solid State Nucl. Magn. Reson., 1999, 15, 69.
- 285 H. R. Tang, Y. L. Wang and P. S. Belton, *Solid State Nucl. Magn. Reson.*, 2000, 15, 239.
- 286 H. R. Tang, P. S. Belton, A. Ng and P. Ryden, J. Agric. Food Chem., 1999, 47, 510.
- 287 C. Renard and M. C. Jarvis, *Plant Physiology*, 1999, **119**, 1315.
- 288 J. B. Lambert, C. E. Shawl, G. O. Poinar and J. A. Santiago-Blay, *Bioorganic Chem.*, 1999, 27, 409.
- 289 C. Renard and M. C. Jarvis, *Carbohydr. Polym.*, 1999, **39**, 209.
- 290 K. R. Morgan, C. J. Roberts, S. J. B. Tendler, M. C. Davies and P. F. Williams, *Carbohydr. Res.*, 1999, 315, 169.
- 291 S. A. Rezzoug, Z. Maache-Rezzoug, J. Mazoyer, M. Jeannin and K. Allaf, *Carbohydr. Polym.*, 2000, **42**, 73.

- 292 M. Zhang, A. Haga, H. Sekiguchi and S. Hirano, *Int. J. Biol. Macromol.*, 2000, 27, 99.
- 293 G. C. Stael, J. R. M. Dalmeida and M. I. B. Tavares, *Polym. Testing*, 2000, 19, 251.
- 294 W. C. Hutton, J. R. Garbow and T. R. Hayes, Lipids, 1999, 34, 1339.
- 295 A. T. Martinez, G. Almendros, F. J. Gonzalez-Vila and R. Frund, Solid State Nucl. Magn. Reson., 1999, 15, 41.
- 296 N. Nishikawa, Y. Horiguchi, T. Asakura and I. Ando, *Polym.*, 1999, 40, 2139
- 297 M. Paris, H. Bizot, J. Emery, J. Y. Buzare and A. Buleon, *Carbohydr. Polym.*, 1999, 39, 327.
- 298 H. P. Fink, E. Walenta and J. Kunze, *Papier*, 1999, **53**, 534.
- 299 L. Heux, E. Dinand and M. R. Vignon, *Carbohydr. Polym.*, 1999, **40**, 115.
- H. Kono, Y. Numata, N. Nagai, T. Erata and M. Takai, *Carbohydr. Res.*, 1999,
 322, 256.
- 301 V. Kumar and T. Yang, Int. J. Pharm., 1999, 184, 219.
- 302 P. T. Larsson, E. L. Hult, K. Wickholm, E. Pettersson and T. Iversen, *Solid State Nucl. Magn. Reson.*, 1999, 15, 31.
- 303 B. Kosikova, M. Hricovini and C. Cosentino, Wood Sci. Technol., 1999, 33, 373.
- 304 J. C. C. Freitas, F. G. Emmerich and T. J. Bonagamba, *Chem. Mater.*, 2000, 12, 711.
- 305 S. C. Bao, W. A. Daunch, Y. H. Sun, P. L. Rinaldi, J. J. Marcinko and C. Phanopoulos, *J. Adhesion*, 1999, 71, 377.
- 306 S. Bohic, C. Rey, A. Legrand, H. Sfihi, R. Rohanizadeh, C. Martel, A. Barbier and G. Daculsi, *Bone*, 2000, **26**, 341.
- 307 M. Hong, J. Magn. Reson., 1999, 139, 389.
- 308 M. Hong, J. Am. Chem. Soc., 2000, 122, 3762.
- 309 M. Hong, J. Biomol. NMR, 1999, 15, 1.
- 310 J. Kikuchi and T. Asakura, J. Biochem. Biophys. Methods, 1999, 38, 203.
- 311 Z. T. Gu, D. G. Drueckhammer, L. Kurz, K. Liu, D. P. Martin and A. McDermott, *Biochem.*, 1999, 38, 8022.
- 312 S. Yamaguchi, S. Tuzi, M. Tanio, A. Naito, J. K. Lanyi, R. Needleman and H. Saito, J. Biochem., 2000, 127, 861.
- 313 S. Tuzi, R. Kawaminami, J. Hasegawa, A. Naito, R. Needleman, J. K. Lanyi and H. Saito, *Biophys. J.*, 2000, 78, 2819.
- 314 M. Hong, S. B. Kennedy, E. de Azevedo, T. P. Russell and D. Tirrell, *Biophys. J.*, 2000, 78, LA49.
- 315 A. F. L. Creemers, C. H. W. Klaassen, P. H. M. Bovee-Geurts, R. Kelle, U. Kragl, J. Raap, W. J. de Grip, J. Lugtenburg and H. J. M. de Groot, *Biochemistry*, 1999, **38**, 7195.
- 316 M. Eilers, P. J. Reeves, W. W. Ying, H. G. Khorana and S. O. Smith, *Proc. Nat. Acad. Sci. USA*, 1999, **96**, 487.
- 317 L. Kaustov, S. Kababya, S. C. Du, T. Baasov, S. Gropper, Y. Shoham and A. Schmidt, *J. Am. Chem. Soc.*, 2000, **122**, 2649.
- 318 K. Elbayed, M. Bourdonneau, J. Furrer, T. Richert, J. Raya, J. Hirschinger and M. Piotto, J. Magn. Reson., 1999, 136, 127.
- 319 W. J. Shaw, J. R. Long, J. L. Dindot, A. A. Campbell, P. S. Stayton and G. P. Drobny, J. Am. Chem. Soc., 2000, 122, 1709.
- 320 I. Sack, S. Macholl, F. Wehrmann, J. Albrecht, H. H. Limbach, F. Fillaux, M. H. Baron and G. Buntkowsky, Appl. Magn. Reson., 1999, 17, 413.

- 321 F. M. Marassi, S. J. Opella, P. Juvvadi and R. B. Merrifield, *Biophys. J.*, 1999, 77, 3152.
- 322 M. Bak, M. D. Sorensen, E. S. Sorensen, L. K. Rasmussen, O. W. Sorensen, T. E. Petersen and N. C. Nielsen, Eur. J. Biochem., 2000, 267, 188.
- 323 J. Struppe, J. A. Whiles and R. R. Vold, *Biophys. J.*, 2000, **78**, 281.
- 324 R. S. Prosser, H. Bryant, R. G. Bryant and R. R. Vold, J. Magn. Reson., 1999, 141, 256.
- 325 O. Dannenmuller, K. Arakawa, T. Eguchi, K. Kakinuma, S. Blanc, A. M. Albrecht, M. Schmutz, Y. Nakatani and G. Ourisson, *Chem. Eur. J*, 2000, **6**, 645.
- 326 C. Glaubitz, I. J. Burnett, G. Grobner, A. J. Mason and A. Watts, J. Am. Chem. Soc., 1999, 121, 5787.
- 327 C. Glaubitz, A. Watts and G. Grobner, *Biophys. J.*, 1999, **76**, A391.
- 328 C. Glaubitz, G. Grobner and A. Watts, *Biochim. Biophys. Acta Biomembranes*, 2000, **1463**, 151.
- 329 W. Nerdal, S. A. Gundersen, V. Thorsen, H. Hoiland and H. Holmsen, *Biochim. Biophys. Acta Biomembranes*, 2000, **1464**, 165.
- 330 A. Naito, T. Nagao, K. Norisada, T. Mizuno, S. Tuzi and H. Saito, *Biophys. J.*, 2000, **78**, 2405.
- 331 A. R. Tate, P. J. D. Foxall, E. Holmes, D. Moka, M. Spraul, J. K. Nicholson and J. C. Lindon, NMR Biomedicine, 2000, 13, 64.
- 332 K. Millis, P. Weybright, N. Campbell, J. A. Fletcher, C. D. Fletcher, D. G. Cory and S. Singer, Magn. Reson. Med., 1999, 41, 257.
- 333 T. Nightingale, A. MacKay, R. H. Pearce, K. P. Whittall and B. Flak, *Magn. Reson. Med.*, 2000, **43**, 34.
- D. J. Semchyschyn and P. M. Macdonald, Magn. Reson. Med., 2000, 43, 607.
- 335 S. Hayakawa, K. Tsuru, C. Ohtsuki and A. Osaka, J. Am. Ceram. Soc., 1999, 82, 2155
- 336 S. Hayakawa and A. Osaka, J. Non-Cryst. Solids, 2000, 263, 409.
- 337 D. E. McMillan, J. A. Chudek, S. N. Scrimgeour, G. Hunter and C. H. Lloyd, *J. Dental Res.*, 2000, **79**, 1719.
- 338 C. H. Lloyd, S. N. Scrimgeour, G. Hunter, J. A. Chudek, D. M. Lane and P. J. McDonald, J. Mater. Sci.-Mater. Med., 1999, 10, 369.
- B. Bechinger, Biochim. Biophys. Acta Biomembranes, 1999, 1462, 157.
- 340 D. A. Middleton, C. S. Le Duff, X. Peng, D. G. Reid and D. Saunders, J. Am. Chem. Soc., 2000, 122, 1161.
- 341 B. R. Rohrs, T. J. Thamann, P. Gao, D. J. Stelzer, M. S. Bergren and R. S. Chao, *Pharm. Res.*, 1999, 16, 1850.
- 342 A. Medek and L. Frydman, J. Am. Chem. Soc., 2000, 122, 684.
- 343 J. Klein, M. Ushio, L. S. Burrell, B. Wenslow and S. L. Hem, J. Pharm. Sci., 2000, 89, 311.
- 344 G. S. H. Lee, D. C. Craig, G. S. K. Kannangara, M. Dawson, C. Conn, J. Robertson and M. A. Wilson, *J. Forensic Sci.*, 1999, 44, 761.
- 345 H. Kawashima and O. Yamada, Fuel Processing Technol., 1999, 61, 279.
- N. F. Dunlop and R. B. Johns, *Org. Geochem.*, 1999, **30**, 1301.
- 347 E. W. Hagaman, L. Farrow and E. G. Galipo, *Solid State Nucl. Magn. Reson.*, 2000, **16**, 69.
- 348 H. Kawashima, Y. Yamashita and I. Saito, J. Anal. Appl. Pyrolysis, 2000, 53, 35.
- 349 A. Martinez-Richa, R. Vera-Graziano, A. Rivera and P. Joseph-Nathan, *Polym.*, 2000, 41, 743.

- 350 L. C. Michon, D. A. Netzel, T. F. Turner, D. Martin and J. P. Planche, *Energy Fuels*, 1999, 13, 602.
- 351 S. Pekerar, T. Lehmann, B. Mendez and S. Acevedo, Energy Fuels, 1999, 13, 305.
- 352 M. Stefanova, S. P. Marinov and I. Nosyrev, Oxidation Commun., 1999, 22, 278.
- 353 R. Alcantara, F. J. F. Madrigal, P. Lavela, J. L. Tirado, J. M. J. Mateos, R. Stoyanova and E. Zhecheva, *Chem. Mater.*, 1999, 11, 52.
- 354 E. F. Emery, L. G. Butler, T. Junk and R. Ferrel, Abstrs. Papers Am. Chem. Soc., 1999, 218, 104.
- 355 P. Benoit and C. M. Preston, Eur. J. Soil Sci., 2000, **51**, 43.
- 356 E. A. Webster, J. A. Chudek and D. W. Hopkins, *Soil Biol. Biochem.*, 2000, 32, 301.
- 357 J. O. Skjemstad, J. A. Taylor, L. J. Janik and S. P. Marvanek, Aust. J. Soil Res., 1999, 37, 151.
- 358 B. S. Xing and Z. Q. Chen, Soil Sci., 1999, **164**, 40.
- 359 R. J. Smernik and J. M. Oades, Geoderma, 1999, 89, 219.
- 360 K. H. Dai and C. E. Johnson, *Geoderma*, 1999, **93**, 289.
- 361 G. Cornelissen, K. A. Hassell, P. C. M. van Noort, R. Kraaij, P. J. van Ekeren, C. Dijkema, P. A. de Jager and H. A. J. Govers, *Environ. Pollution*, 2000, 108, 69.
- 362 W. G. Hu, J. D. Mao, B. S. Xing and K. Schmidt-Rohr, Environ. Sci. Technol., 2000, 34, 530.
- 363 D. E. Kile, R. L. Wershaw and C. T. Chiou, Environ. Sci. Technol., 1999, 33, 2053
- 364 A. D. Lueking, W. L. Huang, S. Soderstrom-Schwarz, M. S. Kim and W. J. Weber, *J. Environ. Quality*, 2000, **29**, 317.
- 365 X. Q. Lu, J. V. Hanna and W. D. Johnson, Appl. Geochem., 2000, 15, 1019.
- 366 H. Knicker and J. O. Skjemstad, Aust. J. Soil Res., 2000, 38, 113.
- 367 H. Knicker, M. W. I. Schmidt and I. Kogel-Knabner, Soil Biol. Biochem., 2000, 32, 241.
- 368 S. D. Kohl, P. J. Toscano, W. H. Hou and J. A. Rice, *Environ. Sci. Technol.*, 2000, 34, 204.
- 369 C. A. Shand, M. V. Cheshire, C. N. Bedrock, P. J. Chapman, A. R. Fraser and J. A. Chudek, *Plant Soil*, 1999, 214, 153.
- 370 A. Root and P. Soriano, J. Appl. Polym. Sci., 2000, 75, 754.
- 371 K. Beshah and L. K. Molnar, *Macromolecules*, 2000, **33**, 1036.
- 372 J. Kriz, J. Brus, J. Plestil, D. Kurkova, B. Masar, J. Dybal, C. Zune and R. Jerome, *Macromolecules*, 2000, 33, 4108.
- 373 J. Rottstegge, K. Landfester, M. Wilhelm, H. W. Spiess and C. Heldmann, Colloid Polym. Sci., 2000, 278, 236.
- 374 G. Crini, M. Bourdonneau, B. Martel, M. Piotto, M. Morcellet, T. Richert, J. Vebrel, G. Torri and N. Morin, *J. Appl. Polym. Sci.*, 2000, **75**, 1288.
- 375 J. M. Huang, P. P. Chu and F. C. Chang, Polym., 2000, 41, 1741.
- 376 Z. K. Zhong and Y. L. Mi, J. Polym. Sci. Part B: Polym. Phys., 1999, 37, 237.
- 377 J. Dybal, J. Brus and P. Schmidt, *Macromol. Symp.*, 1999, **146**, 17.
- S. X. Zheng, Q. P. Guo and Y. L. Mi, J. Polym. Sci. Part B: Polym. Phys., 1999, 37, 2412.
- 379 T. Wagler, P. L. Rinaldi, C. D. Han and H. Chun, *Macromolecules*, 2000, 33, 1778.
- 380 J. Spevacek and J. Brus, *Macromol. Symp.*, 1999, **138**, 123.
- 381 W. G. Hu and K. Schmidt-Rohr, Polym., 2000, 41, 2979.
- 382 S. Y. Kwak, Polym., 1999, 40, 6361.

- 383 W. Barendswaard, V. M. Litvinov, F. Souren, R. L. Scherrenberg, C. Gondard and C. Colemonts, *Macromolecules*, 1999, 32, 167.
- 384 P. Mustarelli, E. Quartarone, C. Capiglia, C. Tomasi, P. Ferloni and A. Magistris, *J. Chem. Phys.*, 1999, **111**, 3761.
- 385 A. Asano, K. Takegoshi and K. Hikichi, *Polym. J.*, 1999, **31**, 602.
- 386 M. I. B. Tavares and L. C. Mendes, *Polym. Testing*, 2000, **19**, 399.
- 387 M. Wilhelm, M. Neidhofer, S. Spiegel and H. W. Spiess, *Macromol. Chem. Phys.*, 1999, 200, 2205.
- 388 F. H. Larsen, T. Rasmussen, W. B. Pedersen, N. C. Nielsen and H. J. Jakobsen, *Polymer*, 1999, 40, 7013.
- 389 C. H. Zhao, H. J. Zhang, T. Yamanobe, S. Kuroki and I. Ando, Macromolecules, 1999, 32, 3389.
- 390 P. Wang and I. Ando, J. Mol. Struct., 1999, 508, 103.
- 391 R. Schreiber, W. S. Veeman, W. Gabrielse and J. Arnauts, *Macromolecules*, 1999, 32, 4647.
- 392 M. Principe, P. Ortiz and R. Martinez, *Polym. Int.*, 1999, **48**, 637.
- 393 R. A. Assink, M. Celina, T. D. Dunbar, T. M. Alam, R. L. Clough and K. T. Gillen, *Macromolecules*, 2000, 33, 4023.
- 394 A. Cao, N. Asakawa, N. Yoshie and Y. Inoue, *Polymer*, 1999, **40**, 3309.
- 395 M. K. Cheung, J. Wang, S. Zheng and Y. Mi, *Polymer*, 2000, 41, 1469.
- 396 A. L. Cholli and D. J. Sandman, Bull. Mater. Sci., 1999, 22, 691.
- 397 C. DeRosa, F. Auriemma, D. Capitani, L. Caporaso and G. Talarico, *Polymer*, 2000, 41, 2141.
- 398 X. M. Fang, X. Q. Xie, C. D. Simone, M. P. Stevens and D. A. Scola, *Macromolecules*, 2000, 33, 1671.
- 399 J. Grobelny, Polimery, 1999, 44, 326.
- 400 J. Grobelny, Polymer, 1999, 40, 2939.
- 401 O. H. Han, S. A. Chae, S. O. Han and S. K. Woo, *Polymer*, 1999, **40**, 6329.
- 402 J. I. Iribarren, A. M. de Ilarduya, C. Aleman, J. M. Oraison, A. Rodriguez-Galan and S. Munoz-Guerra, *Polymer*, 2000, 41, 4869.
- 403 H. Ishida and F. Horii, *Polymer*, 1999, **40**, 3781.
- 404 M. Ishida, J. Oshima, K. Yoshinaga and F. Horii, Polymer, 1999, 40, 3323.
- 405 F. Ishii, S. Matsunami, M. Shibata and T. Kakuchi, J. Polym. Sci. Part B: Polym. Phys., 1999, 37, 1657.
- 406 M. Kanekiyo, M. Kobayashi, I. Ando, H. Kurosu and S. Amiya, *Polymer*, 2000, 41, 2391.
- 407 A. R. Lim, J. H. Kim and B. M. Novak, *Polymer*, 2000, **41**, 2431.
- 408 A. R. Lim, J. R. Stewart and B. M. Novak, Solid State Commun., 1999, 110, 23.
- 409 A. R. Lim, G. T. Schueneman and B. M. Novak, *Solid State Commun.*, 1999, 109, 465.
- 410 A. R. Lim and B. M. Novak, Solid State Commun., 1999, 109, 29.
- 411 A. R. Lim, J. H. Kim and B. M. Novak, Chem. Phys., 1999, 246, 373.
- 412 K. Masuda, H. Kaji and F. Horii, J. Polym. Sci. Part B: Polym. Phys., 2000, 38, 1.
- 413 S. Ono, Y. Kiuchi, J. Sawanobori and M. Ito, *Polym. Int.*, 1999, **48**, 1035.
- H14 B. D. Park and B. Riedl, J. Appl. Polym. Sci., 2000, 77, 841.
- 415 E. Brendler, E. Ebrecht, B. Thomas, G. Boden and T. Breuning, Fresenius [prime] J. Anal. Chem., 1999, 363, 185.
- 416 B. Fuchs and U. Scheler, Macromolecules, 2000, 33, 120.
- 417 E. Katoh, H. Sugisawa, A. Oshima, Y. Tabata, T. Seguchi and T. Yamazaki, *Radiation Phys. Chem.*, 1999, **54**, 165.

- 418 S. A. Reinsberg, S. Ando and R. K. Harris, *Polymer*, 2000, **41**, 3729.
- 419 Y. Kawakami, Macromol. Symp., 1999, 146, 25.
- 420 V. Strelko, M. Streat and O. Kozynchenko, *Reactive Functional Polymers*, 1999, **41**, 245.
- 421 P. Sotta, S. Valic, B. Deloche, D. Maring and H. W. Spiess, *Acta Polym.*, 1999, 50, 205.
- 422 M. Ganguli and K. J. Rao, J. Solid State Chem., 1999, 145, 65.
- 423 J. K. Jung, S. K. Song, T. H. Noh and O. H. Han, *J. Non-Cryst. Solids*, 2000, 270, 97
- 424 N. J. Clayden, S. Esposito, A. Aronne and P. Pernice, J. Non-Cryst. Solids, 1999,
- 425 G. Jeschke, M. Kroschel and M. Jansen, J. Non-Cryst. Solids, 1999, 260, 216.
- 426 J. F. Stebbins, P. D. Zhao and S. Kroecker, *Solid State Nucl. Magn. Reson.*, 2000, **16**, 9.
- 427 T. Yazawa, K. Kuraoka, T. Akai, N. Umesaki and W. F. Du, J. Phys. Chem. B, 2000, 104, 2109.
- 428 R. E. Youngman, B. G. Aitken and J. E. Dickinson, *J. Non-Cryst. Solids*, 2000, **263**, 111.
- 429 V. Sudarsan and S. K. Kulshreshtha, J. Non-Cryst. Solids, 1999, 258, 20.
- 430 R. Hussin, R. Dupree and D. Holland, J. Non-Cryst. Solids, 1999, **246**, 159.
- 431 J. F. Stebbins, S. K. Lee and J. V. Oglesby, Am. Mineral., 1999, 84, 983.
- 432 Q. Zeng and J. F. Stebbins, Am. Mineral., 2000, 85, 863.
- 433 T. M. Alam, J. McLaughlin, C. C. Click, S. Conzone, R. K. Brow, T. J. Boyle and J. W. Zwanziger, *J. Phys. Chem. B*, 2000, 104, 1464.
- 434 A. Belkebir, J. Rocha, A. P. Esculcas, P. Berthet, S. Poisson, B. Gilbert, Z. Gabelica, G. Llabres, F. Wijzen and A. Rulmont, Spectrochim. Acta Part A Mol. Biomol. r Spectrosc., 2000, 56, 423.
- 435 K. J. D. MacKenzie, J. Temuujin and K. Okada, *Thermochim. Acta*, 1999, 327,
- 436 D. Iuga, S. Simon, E. de Boer and A. P. M. Kentgens, J. Phys. Chem. B, 1999, 103, 7591.
- 437 J. S. Jin, S. Sakida, T. Yoko and M. Nogami, J. Non-Cryst. Solids, 2000, 262, 183
- 438 R. Petrini, C. Forte, G. Contin, C. Pinzino and G. Orsi, *Bull. Volcanol.*, 1999, **60**,
- 439 B. L. Phillips, H. W. Xu, P. J. Heaney and A. Navrotsky, *Am. Mineral.*, 2000, **85**, 181
- 440 S. Komarneni, R. Pidugu, W. Hoffbauer and H. Schneider, *Clays Clay Minerals*, 1999, 47, 410.
- 441 T. Yano, T. Nagano, J. Lee, S. Shibata and M. Yamane, J. Non-Cryst. Solids, 2000, 270, 163.
- 442 G. Y. Guo, Mater. Res. Bull., 1999, 34, 621.
- 443 M. G. Mortuza, R. Dupree and D. Holland, J. Mater. Sci., 2000, 35, 2829.
- 444 J. F. Stebbins and B. T. Poe, Geophys. Res. Lett., 1999, 26, 2521.
- 445 S. K. Lee and J. F. Stebbins, *Am. Mineral.*, 1999, **84**, 937.
- 446 K. J. D. MacKenzie, C. M. Sheppard, K. Okada and Y. Kameshima, *J. Eur. Ceram. Soc.*, 1999, 19, 2731.
- 447 J. V. Oglesby and J. F. Stebbins, Am. Mineral., 2000, 85, 722.
- 448 A. Hayashi, R. Araki, K. Tadanaga, M. Tatsumisago and T. Minami, *Phys. Chem. Glasses*, 1999, **40**, 140.

- 449 J. M. Oliveira, R. N. Correia, M. H. Fernandez and J. Rocha, J. Non-Cryst. Solids, 2000, 265, 221.
- 450 T. Schaller, C. Y. Rong, M. J. Toplis and H. Cho, J. Non-Cryst. Solids, 1999, 248, 19.
- 451 F. Fayon, C. Bessada, J. P. Coutures and D. Massiot, *Inorg. Chem.*, 1999, 38, 5212.
- 452 Y. Yue, C. Russel, G. Carl, M. Braun and C. Jager, *Phys. Chem. Glasses*, 2000, 41, 12.
- 453 J. W. Wiench, M. Pruski, B. Tischendorf, J. U. Otaigbe and B. C. Sales, J. Non-Cryst. Solids, 2000, 263, 101.
- 454 B. G. Aitken and R. E. Youngman, J. Non-Cryst. Solids, 2000, 263, 117.
- 455 A. Belkebir, J. Rocha, A. P. Esculcas, P. Berthet, B. Gilbert, Z. Gabelica, G. Llabres, F. Wijzen and A. Rulmont, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2000, 56, 435.
- 456 A. Belkebir, J. Rocha, A. P. Esculcas, P. Berthet, B. Gilbert, Z. Gabelica, G. Llabres, F. Wijzen and A. Rulmont, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 1999, 55, 1323.
- 457 A. LeSauze, L. Montagne, G. Palavit, F. Fayon and R. Marchand, J. Non-Cryst. Solids, 2000, 263, 139.
- 458 P. DiLeo and P. Obrien, Clays Clay Miner., 1999, 47, 761.
- 459 S. Sakida, S. Hayakawa and T. Yoko, J. Non-Cryst. Solids, 1999, 243, 13.
- 460 Q. Zeng, H. Nekvasil and C. P. Grey, *J. Phys. Chem. B*, 1999, **103**, 7406.
- 461 Q. Zeng, H. Nekvasil and C. P. Grey, Geochim. Cosmochim. Acta, 2000, 64, 883.
- 462 H. Yamashita, K. Nagata, H. Yoshino, K. Ono and T. Maekawa, J. Non-Cryst. Solids, 1999, 248, 115.
- 463 H. Yamashita, H. Yoshino, K. Nagata, H. Inoue, T. Nakajin and T. Maekawa, J. Non-Cryst. Solids, 2000, 270, 48.
- 464 R. Martens and W. Muller-Warmuth, J. Non-Cryst. Solids, 2000, 265, 167.
- 465 P. Faucon, J. C. Petit, T. Charpentier, J. F. Jacquinot and F. Adenot, J. Am. Ceram. Soc., 1999, 82, 1307.
- 466 P. Faucon, A. Delagrave, J. C. Petit, C. Richet, J. M. Marchand and H. Zanni, J. Phys. Chem. B, 1999, 103, 7796.
- 467 O. M. Jensen, M. S. H. Korzen, H. J. Jakobsen and J. Skibsted, *Adv. Cement Res.*, 2000, **12**, 57.
- 468 H. Viallis, P. Faucon, J. C. Petit and A. Nonat, J. Phys. Chem. B, 1999, 103,
- 469 W. P. Gates, P. Komadel, J. Madejova, J. Bujdak, J. W. Stucki and R. J. Kirkpatrick, Appl. Clay Sci., 2000, 16, 257.
- 470 G. K. Sun, A. R. Brough and J. F. Young, J. Am. Ceram. Soc., 1999, 82, 3225.
- 471 D. Anderson, A. Roy, R. K. Seals, F. K. Cartledge, H. Akhter and S. C. Jones, Cement Concrete Res., 2000, 30, 437.
- 472 S. Gomes and M. Francois, Cement Concrete Res., 2000, 30, 175.
- 473 K. Johansson, C. Larsson, O. N. Antzutkin, W. Forsling, H. R. Kota and V. Ronin, Cement Concrete Res., 1999, 29, 1575.
- 474 N. J. Coleman and W. R. McWhinnie, J. Mater. Sci., 2000, 35, 2701.
- 475 W. P. Zhang, D. Ma, X. C. Liu, X. M. Liu and X. H. Bao, *Chem. Commun.*, 1999, 1091.
- 476 M. H. ZahediNiaki, S. M. Zaidi and S. Kaliaguine, Microporous Mesoporous Mater., 1999, 32, 251.

- 477 T. Baba and Y. Ono, *Appl. Catal. A Gen.*, 1999, **181**, 227.
- 478 D. Ma, W. P. Zhang, Y. Y. Shu, X. M. Liu, Y. D. Xu and X. H. Bao, Catal. Lett., 2000, 66, 155.
- 479 C. Paze, A. Zecchina, S. Spera, A. Cosma, E. Merlo, G. Spano and G. Girotti, Phys. Chem. Chem. Phys., 1999, 1, 2627.
- 480 H. M. Liu, H. M. Kao and C. P. Grey, J. Phys. Chem. B, 1999, 103, 4786.
- 481 M. Feuerstein and R. F. Lobo, *Solid State Ionics*, 1999, **118**, 135.
- 482 F. Z. Zhang, X. W. Guo, X. S. Wang, G. Y. Li, Q. Zhao, X. H. Bao, X. W. Han and L. W. Lin, *Appl. Catal. A Gen.*, 2000, **192**, 157.
- 483 T. Tao and G. E. Maciel, Langmuir, 1999, 15, 1236.
- 484 U. Schenk, M. Hunger and J. Weitkamp, Magn. Reson. Chem., 1999, 37, S75.
- 485 A. R. Pradhan, T. S. Lin, W. H. Chen, S. J. Jong, J. F. Wu, K. J. Chao and S. B. Liu, J. Catal., 1999, 184, 29.
- 486 L. M. Bull, B. Bussemer, T. Anupold, A. Reinhold, A. Samoson, J. Sauer, A. K. Cheetham and R. Dupree, *J. Am. Chem. Soc.*, 2000, **122**, 4948.
- 487 A. Simon, L. Delmotte, J. M. Chezeau, A. Janin and J. C. Lavalley, *Phys. Chem. Chem. Phys.*, 1999, 1, 1659.
- 488 M. W. Anderson, J. R. Agger, D. P. Luigi, A. K. Baggaley and J. Rocha, *Phys. Chem. Chem. Phys.*, 1999, 1, 2287.
- 489 A. Burton, M. Feuerstein, R. F. Lobo and J. C. C. Chan, *Microporous Mesoporous Mater.*, 1999, **30**, 293.
- 490 A. Matijasic, A. R. Lewis, C. Marichal, L. Delmotte, J. M. Chezeau and J. Patarin, *Phys. Chem. Chem. Phys.*, 2000, **2**, 2807.
- 491 M. T. Janicke, C. C. Landry, S. C. Christiansen, S. Birtalan, G. D. Stucky and B. F. Chmelka, *Chem. Mater.*, 1999, 11, 1342.
- 492 B. Chakraborty and B. Viswanathan, Catal. Today, 1999, 49, 253.
- 493 K. Chaudhari, T. K. Das, A. J. Chandwadkar and S. Sivasanker, *J. Catal.*, 1999, 186, 81.
- 494 M. Hunger, U. Schenk, M. Breuninger, R. Glaser and J. Weitkamp, *Microporous Mesoporous Mater.*, 1999, **27**, 261.
- 495 P. Meriaudeau, A. Tuel and T. T. H. Vu, Catal. Lett., 1999, 61, 89.
- 496 R. Mokaya, J. Catal., 1999, 186, 470.
- 497 W. M. Zhang, P. G. Smirniotis, M. Gangoda and R. N. Bose, J. Phys. Chem. B, 2000, 104, 4122.
- 498 A. K. Sinha, C. V. V. Satyanarayana, D. Srinivas, S. Sivasanker and P. Ratnasamy, *Microporous Mesoporous Mater.*, 2000, 35–6, 471.
- 499 J. Qui, G. Q. Zhang, Y. J. Sun, H. W. Jiang and Y. C. Long, *Acta Chim. Sin.*, 1999, 57, 377.
- P. Lentz, J. B. Nagy, L. Delevoye, Y. Dumazy, C. Fernandez, J. P. Amoureux, C. V. Tuoto and A. Nastro, *Colloids Surfaces A Physicochem. Eng. Aspects*, 1999, 158, 13.
- 501 P. Lentz, J. B. Nagy, L. Delevoye, C. Fernandez, J. P. Amoureux, C. V. Tuoto and A. Nastro, *Studies Surf. Sci. Catal.*, 1999, 125, 205.
- 502 K. L. Moran, P. D. Barker, J. E. Readman, P. P. Edwards, R. Dupree and P. A. Anderson, *Chem. Commun.*, 2000, 55.
- 503 J. Goldwasser, F. J. Machado, B. Mendez, C. M. Lopez and M. M. Ramirez, *React. Kinet. Catal. Lett.*, 1999, **67**, 365.
- 504 C. Marichal, L. Vidal, L. Delmotte and J. Patarin, *Microporous Mesoporous Mater.*, 2000, 34, 149.

- 505 S. Caldarelli, A. Meden and A. Tuel, *J. Phys. Chem. B*, 1999, **103**, 5477.
- 506 M. Hochgrafe, H. Gies, C. A. Fyfe, Y. Feng and H. Grondey, *Chem. Mater.*, 2000, 12, 336.
- 507 T. Tsuboi, T. Sakka, Y. H. Ogata and S. Naito, J. Porous Mater., 2000, 7, 327.
- 508 H. P. Tian and C. L. Li, J. Mol. Catal. A Chem., 1999, 149, 205.
- 509 A. K. Sinha and S. Sivasanker, Catal. Today, 1999, 49, 293.
- 510 L. Y. Chen, T. Horiuchi, T. Mori and K. Maeda, J. Phys. Chem. B, 1999, 103, 1216.
- 511 T. H. Chen, B. H. Wouters and P. J. Grobet, J. Phys. Chem. B, 1999, 103, 6179.
- 512 T. H. Chen, B. H. Wouters and P. J. Grobet, *Colloids Surfaces A Physicochem. Eng. Aspects*, 1999, **158**, 145.
- 513 T. H. Chen, B. H. Wouters and P. J. Grobet, Eur. J. Inorg. Chem., 2000, 281.
- 514 K. Hashimoto and N. Toukai, *Appl. Catal. A Gen.*, 1999, **180**, 367.
- 515 M. L. Occelli, H. Eckert, A. Wolker and A. Auroux, *Microporous Mesoporous Mater.*, 1999, **30**, 219.
- 516 M. Sanchez-Sanchez, T. Blasco and F. Rey, *Phys. Chem. Chem. Phys.*, 1999, 1, 4529.
- 517 J. D. Martinez, L. B. McCusker and C. Baerlocher, *Microporous Mesoporous Mater.*, 2000, **34**, 99.
- 518 M. Muller, G. Harvey and R. Prins, *Microporous Mesoporous Mater.*, 2000, 34, 135.
- 519 W. P. Zhang, X. H. Bao, X. W. Guo and X. S. Wang, *Catal. Lett.*, 1999, **60**,
- 520 W. L. Li, Y. Wang, Z. Y. Tan and X. H. Bao, Chin. Sci. Bull., 2000, 45, 325.
- 521 S. Ramirez, J. M. Dominguez, M. Viniegra and L. C. de Menorval, *New J. Chem.*, 2000, 24, 99.
- 522 D. B. Akolekar, S. K. Bhargava, J. Gorman and P. Paterson, *Colloids Surfaces A Physicochem. Engi. Aspects*, 1999, **146**, 375.
- 523 A. Eldewik, J. M. Hook, N. K. Singh and R. F. Howe, *Magn. Reson. Chem.*, 1999, **37**, S63.
- 524 I. Hannus, Z. Konya, P. Lentz, J. B. Nagy and I. Kiricsi, *J. Mol. Struct.*, 1999, 483, 359
- 525 G. M. Johnson, P. J. Mead, S. E. Dann and M. T. Weller, J. Phys. Chem. B, 2000, 104, 1454.
- 526 M. L. Occelli, A. E. Schweizer, C. Fild, G. Schwering, H. Eckert and A. Auroux, J. Catal., 2000, 192, 119.
- 527 M. L. Occelli, G. Schwering, C. Fild, H. Eckert, A. Auroux and P. S. Iyer, *Microporous Mesoporous Mater.*, 2000, **34**, 15.
- 528 E. J. Munson, L. E. Kaune and P. K. Isbester, *Abstr. Papers Am. Chem. Soc.*, 1999, 218, 67.
- 529 T. Baba, N. Komatsu, T. Takahashi, H. Sugisawa and Y. Ono, *Studies Surf. Sci. Catal.*, 1999, **125**, 269.
- 530 S. Gao and J. B. Moffat, Catal. Lett., 1999, 61, 61.
- 531 V. Ladizhansky, G. Hodes and S. Vega, *J. Phys. Chem. B*, 2000, **104**, 1939.
- 532 M. A. Parent and J. B. Moffat, *Catal. Lett.*, 1999, **60**, 191.
- 533 V. Parvulescu, V. I. Parvulescu and P. Grange, Catal. Today, 2000, 57, 193.
- 534 J. Sommer, D. Habermacher, R. Jost, A. Sassi, A. G. Stepanov, M. V. Luzgin, D. Freude, H. Ernst and J. Martens, J. Catal., 1999, 181, 265.
- 535 J. M. Miller and L. J. Lakshmi, J. Mol. Catal. A Chem., 1999, 144, 451.
- 536 J. M. Miller and L. J. Lakshmi, J. Catal., 1999, 184, 68.

- 537 J. M. Miller and L. J. Lakshmi, *Appl. Catal. A Gen.*, 2000, **190**, 197.
- 538 J. L. Lakshmi, T. R. B. Jones, M. Gurgi and J. M. Miller, J. Mol. Catal. A Chem., 2000, 152, 99.
- 539 A. W. Heinen, J. A. Peters and H. van Bekkum, *Appl. Catal. A Gen.*, 2000, **194**, 193
- 540 C. Flego and W. O. Parker, *Appl. Catal. A Gen.*, 1999, **185**, 137.
- 541 F. Dumeignil, M. Guelton, M. Rigole, J. P. Amoureux, C. Fernandez and J. Grimblot, *Colloids Surfaces A Physicochem. Eng. Aspects*, 1999, **158**, 75.
- 542 C. E. Webster, R. S. Drago and M. C. Zerner, J. Phys. Chem. B, 1999, 103, 1242.
- 543 S. Vratislav, M. Dlouha and V. Bosacek, *Physica B*, 2000, **276**, 929.
- 544 Ivanova, II, A. I. Rebrov, E. B. Pomakhina and E. G. Derouane, *J. Mol. Catal. A Chem.*, 1999, 141, 107.
- 545 Ivanova, II, I. A. Chernova-Kharaeva, L. Filotti, F. Bozon-Verduraz, G. A. Shafeev, G. Daelen and J. B. Nagy, *Colloids Surfaces A Physicochem. Eng. Aspects*, 1999, 158, 3.
- 546 V. H. Pan, T. Tao, J. W. Zhou and G. E. Maciel, J. Phys. Chem. B, 1999, 103, 6930.
- 547 H. Gunther, S. Oepen, M. Ebener and V. Francke, *Magn. Reson. Chem.*, 1999, 37, S142.
- 548 C. Roveda, T. L. Church, H. Alper and S. L. Scott, Chem. Mater., 2000, 12, 857.
- 549 C. A. Muller, M. Schneider, T. Mallat and A. Baiker, J. Catal., 2000, 189, 221.
- 550 G. Grossmann, A. Grossmann, G. Ohms, E. Breuer, R. Chen, C. Golomb, H. Cohen, G. Hagele and R. Classen, *Magn. Reson. Chem.*, 2000, 38, 11.
- 551 A. Fonseca, B. Lledos, P. Pullumbi, J. Lignieres and J. B. Nagy, Studies Surf. Sci. Catal., 1999, 125, 229.
- 552 H. Kabashima, H. Tsuji, S. Nakata, Y. Tanaka and H. Hattori, *Appl. Catal. A Gen.*, 2000, **194**, 227.
- 553 J. P. Nordin, D. J. Sullivan, B. L. Phillips and W. H. Casey, Geochim. Cosmochim. Acta, 1999, 63, 3513.
- 554 V. V. Terskikh, O. B. Lapina and V. M. Bondareva, *Phys. Chem. Chem. Phys.*, 2000, **2**, 2441.
- J. Quartararo, M. Rigole, M. Guelton, J. P. Amoureux and J. Grimblot, J. Chim. Phys. Physico-Chim. Biol., 1999, 96, 1536.
- 556 A. G. Potapov, V. V. Terskikh, V. A. Zakharov and G. D. Bukatov, J. Mol. Catal. A Chem., 1999, 145, 147.
- 557 L. Fischer, V. Harle, S. Kasztelan and J. B. D. de la Caillerie, Solid State Nucl. Magn. Reson., 2000, 16, 85.
- 558 C. S. Song and A. D. Schmitz, Sekiyu Gakkaishi J. Jpn. Petroleum Inst., 1999, 42, 287.
- 559 G. J. Hutchings, I. D. Hudson, D. Bethell and D. G. Timms, J. Catal., 1999, 188, 291.
- 560 C. M. Lopez, K. Rodriguez, B. Mendez, A. Montes and F. J. Machado, *Appl. Catal. A Gen.*, 2000, **197**, 131.
- 561 C. Cannas, M. Casu, A. Lai, A. Musinu and G. Piccaluga, J. Mater. Chem., 1999, 9, 1765.
- 562 J. B. Xiao, J. S. Xu, Y. M. Wu and Z. Gao, Appl. Catal. A Gen., 1999, 181, 313.
- 563 G. W. Wagner and P. W. Bartram, J. Mol. Catal. A Chem., 1999, 144, 419.
- 564 L. Schmid, O. Krocher, R. A. Koppel and A. Baiker, Microporous Mesoporous Mater., 2000, 35-6, 181.

- 565 A. Benarafa, M. Kacimi, G. Coudurier and M. Ziyad, *Appl. Catal. A Gen.*, 2000, 196, 25.
- 566 C. Bianchini, D. G. Burnaby, J. Evans, P. Frediani, A. Meli, W. Oberhauser, R. Psaro, L. Sordelli and F. Vizza, J. Am. Chem. Soc., 1999, 121, 5961.
- 567 J. M. Coronado, F. Coloma and J. A. Anderson, J. Mol. Catal. A Chem., 2000, 154, 143.
- 568 P. G. P. de Oliveira, J. G. Eon, M. Chavant, A. S. Riche, V. Martin, S. Caldarelli and J. C. Volta, *Catal. Today*, 2000, 57, 177.
- 569 P. Kohli and G. J. Blanchard, *Langmuir*, 2000, **16**, 695.
- 570 J. P. Osegovic and R. S. Drago, J. Catal., 1999, **182**, 1.
- 571 J. P. Osegovic and R. S. Drago, J. Phys. Chem. B, 2000, 104, 147.
- 572 A. A. Shubin, O. B. Lapina and D. Courcot, Catal. Today, 2000, 56, 379.
- 573 C. Gheorghe and B. Gee, *Chem. Mater.*, 2000, **12**, 682.
- 574 A. A. Shubin, O. B. Lapina, E. Bosch, J. Spengler and H. Knozinger, *J. Phys. Chem. B*, 1999, **103**, 3138.
- 575 W. P. Zhang, D. Ma, X. W. Han, X. M. Liu, X. H. Bao, X. W. Guo and X. S. Wang, J. Catal., 1999, 188, 393.
- 576 N. Essayem, Y. Y. Tong, H. Jobic and J. C. Vedrine, *Appl. Catal. A Gen.*, 2000, 194, 109.
- 577 M. D. Alba, A. I. Becerro, M. A. Castro and A. C. Perdigon, *Chem. Commun.*, 2000, 37.
- 578 M. Fait, D. Heidemann and H. J. Lunk, Z. Anorg. Allg. Chem., 1999, 625, 530.
- 579 Y. Nitta, M. Nagayama, H. Miyake and A. Ohta, J. Power Sources, 1999, 82, 49.
- 580 Y. J. Lee, F. Wang, S. Mukerjee, J. McBreen and C. P. Grey, J. Electrochem. Soc., 2000, 147, 803.
- 581 M. Menetrier, I. Saadoune, S. Levasseur and C. Delmas, J. Mater. Chem., 1999, 9 1135.
- 582 N. Treuil, C. Labrugere, M. Menetrier, J. Portier, G. Campet, A. Deshayes, J. C. Frison, S. J. Hwang, S. W. Song and J. H. Choy, J. Phys. Chem. B, 1999, 103, 2100
- 583 Q. F. Shao, J. Chen, T. L. Wu, R. F. Cai and Z. E. Huang, Acta Phys. Sin., 2000, 49, 557.
- 584 F. Cataldo and D. Capitani, Mater. Chem. Phys., 1999, 59, 225.
- 585 S. E. Ashbrook, A. J. Berry and S. Wimperis, *Am. Mineral.*, 1999, **84**, 1191.
- 586 T. J. Bastow, G. A. Botton, J. Etheridge, M. E. Smith and H. J. Whitfield, Acta Crystallogr. Sect. A, 1999, 55, 127.
- 587 H. Masui, T. Ueda, K. Miyakubo, T. Eguchi and N. Nakamura, Z. Naturforsch. Section A: J. Phys. Sci., 2000, 55, 348.
- 588 J. Rocha, J. Phys. Chem. B, 1999, 103, 9801.
- 589 I. Abrahams, A. J. Bush, G. E. Hawkes and T. Nunes, *J. Solid State Chem.*, 1999, **147**, 631.
- 590 J. C. Buhl, F. Stief, M. Fechtelkord, T. M. Gesing, U. Taphorn and C. Taake, J. Alloys Compd., 2000, 305, 93.
- 591 J. Cuadros, C. I. Sainz-Diaz, R. Ramirez and A. Hernandez-Laguna, Am. J. Sci., 1999, 299, 289.
- 592 S. Harrison, X. Q. Xie, K. J. Jakubenas and H. L. Marcus, J. Am. Ceram. Soc., 1999, 82, 3221.
- 593 X. Helluy, C. Marichal and A. Sebald, J. Phys. Chem. B, 2000, 104, 2836.
- 594 C. Aubauer, G. Engelhardt, T. M. Klapotke and A. Schulz, J. Chem. Soc. Dalton Trans., 1999, 1729.

- 595 F. V. Mikulec, M. Kuno, M. Bennati, D. A. Hall, R. G. Griffin and M. G. Bawendi, J. Am. Chem. Soc., 2000, 122, 2532.
- 596 B. Torok, I. Palinko, A. Molnar and M. Rozsa-Tarjani, J. Mol. Struct., 1999, 483, 329.
- 597 J. Cervantes, G. Mendoza-Diaz, D. E. Alvarez-Gasca and A. Martinez-Richa, Solid State Nucl. Magn. Reson., 1999, 13, 263.
- 598 C. Forte, M. Geppi, A. Triolo, C. A. Veracini and G. Visalli, *J. Phys. Chem. B*, 2000, **104**, 510.
- 599 M. Kamihira, A. Naito, S. Tuzi and H. Saito, J. Phys. Chem. A, 1999, 103, 3356.
- 600 S. J. Kitchin and T. K. Halstead, Appl. Magn. Reson., 1999, 17, 283.
- 601 G. W. Buchanan, M. Gerzain and C. I. Ratcliffe, Can. J. Chem.-Rev. Can. Chim., 1999, 77, 1911.
- 602 G. W. Buchanan, G. McManus and H. C. Jarrell, *Chem. Phys. Lipids*, 2000, **104**, 23.
- 603 E. B. Brouwer, G. D. Enright, C. I. Ratcliffe, G. A. Facey and J. A. Ripmeester, J. Phys. Chem. B, 1999, 103, 10604.
- 604 D. Reichert, G. Hempel, H. Zimmermann, P. Tekely, R. Poupko, Z. Luz, D. E. Favre and B. F. Chmelka, Appl. Magn. Reson., 1999, 17, 315.
- 605 G. W. Wagner and Y. C. Yang, J. Mol. Struct., 1999, 479, 93.
- 606 J. E. Anderson, D. Casarini, L. Lunazzi and A. Mazzanti, J. Org. Chem., 2000, 65, 1729.
- 607 J. E. Anderson, D. Casarini, L. Lunazzi and A. Mazzanti, Eur. J. Org. Chem., 2000, 479.
- 608 D. Casarini, E. Foresti, L. Lunazzi and A. Mazzanti, *Chem. Eur. J.*, 1999, 5, 3501.
- 609 L. Lunazzi, A. Mazzanti, D. Casarini, O. De Lucchi and F. Fabris, J. Org. Chem., 2000, 65, 883.
- 610 G. H. Penner, Y. C. P. Chang, P. Nechala and R. Froese, J. Org. Chem., 1999, 64, 447.
- 611 E. Hughes, J. L. Jordan and T. Gullion, J. Phys. Chem. B, 2000, 104, 691.
- 612 T. Nakaoki, T. Sumida, M. Takagi and K. Takemoto, *Polym. Bull.*, 1999, 43, 365
- 613 O. Klein, M. M. Bonvehi, F. Aguilar-Parrilla, N. Jagerovic, J. Elguero and H. H. Limbach, *Israel J. Chem.*, 1999, 39, 291.
- 614 U. Langer, C. Hoelger, B. Wehrle, L. Latanowicz, E. Vogel and H. H. Limbach, J. Phys. Org. Chem., 2000, 13, 23.
- 615 R. K. Harris, A. Nordon and K. D. M. Harris, *Magn. Reson. Chem.*, 1999, 37,
- 616 J. V. Barkley, T. Eguchi, R. A. Harding, B. T. Heaton, G. Longoni, L. Manzi, H. Nakayama, K. Miyagi, A. K. Smith and A. Steiner, *J. Organomet. Chem.*, 1999, 573, 254.
- 617 G. A. Facey, T. P. Fong, D. Gusev, P. M. Macdonald, R. H. Morris, M. Schlaf and W. Xu, *Can. J. Chem.–Rev. Can. Chim.*, 1999, 77, 1899.
- 618 W. Domalewski and F. G. Riddell, Bull. Pol. Acad. Sci. Chem., 1999, 47, 41.
- 619 E. J. Munson, M. C. Douskey, S. M. DePaul, M. Ziegeweid, L. Phillips, F. Separovic, M. S. Davies and M. J. Aroney, *J. Organomet. Chem.*, 1999, **577**, 19.
- 620 X. Helluy, J. Kummerlen, C. Marschner and A. Sebald, *Monatsh. Chem.*, 1999, 130, 147.
- 621 P. Bernatowicz, R. E. Dinnebier, X. Helluy, J. Kummerlen and A. Sebald, Appl. Magn. Reson., 1999, 17, 385.

- 622 T. Ueda, S. Nagatomo, H. Masui, N. Nakamura and S. Hayashi, Z. Naturforsch. Sect. A: Phys. Sci., 1999, 54, 437.
- 623 N. Dastbaz, D. A. Middleton, A. George and D. G. Reid, *Mol. Simulation*, 1999, 22, 51.
- 624 O. Saurel, P. Demange, A. Lopez and A. Milon, J. Chim. Phys. Physico-Chim. Biol., 1999, 96, 1602.
- 625 J. W. Mack, M. G. Usha, J. Long, R. G. Griffin and R. J. Wittebort, Biopolymers, 2000, 53, 9.
- 626 B. Madler, H. Schafer, K. P. Schneider and G. Klose, *Biophys. J.*, 2000, **78**, 2879.
- 627 T. Kameda, Y. Ohkawa, K. Yoshizawa, E. Nakano, T. Hiraoki, A. S. Ulrich and T. Asakura, *Macromolecules*, 1999, 32, 8491.
- 628 N. M. Tsvetkova, B. Phillips, R. Feeney, W. H. Fink, J. H. Crowe, S. Risbud, F. Tablin and Y. Yeh, *Biophys. J.*, 2000, **78**, 2840.
- 629 R. G. K. Leuschner and P. J. Lilford, *Microbiol.* (UK), 2000, **146**, 49.
- 630 A. Krushelnitsky, D. Reichert, G. Hempel, V. Fedotov, H. Schneider, L. Yagodina and A. Schulga, J. Magn. Reson., 1999, 138, 244.
- 631 D. I. Malyarenko, R. L. Vold and G. L. Hoatson, *Macromolecules*, 2000, 33, 1268.
- 632 T. Miyoshi, K. Takegoshi and T. Terao, Macromolecules, 1999, 32, 8914.
- 633 F. Beaume, F. Laupretre and L. Monnerie, *Polym.*, 2000, **41**, 2989.
- 634 T. Baba, Y. Morikawa, N. Komatsu, T. Takahashi, H. Sugisawa and Y. Ono, *Res. Chem. Intermediates*, 2000, **26**, 13.
- 635 N. K. Bar, H. Ernst, H. Jobic and J. Karger, Magn. Reson. Chem., 1999, 37, 879.
- 636 W. Bohlmann, D. Michel and J. Roland, Magn. Reson. Chem., 1999, 37, S126.
- 637 V. J. Carter, J. P. Kujanpaa, F. G. Riddell, P. A. Wright, J. F. C. Turner, C. R. A. Catlow and K. S. Knight, *Chem. Phys. Lett.*, 1999, 313, 505.
- 638 P. Magusin, D. Schuring, E. M. van Oers, J. W. de Haan and R. A. van Santen, Magn. Reson. Chem., 1999, 37, S108.
- 639 M. Yamauchi, S. Ishimaru and R. Ikeda, Z. Naturforsch. Sect. A: Phys. Sci., 1999, 54, 755.
- 640 G. H. Penner, Y. C. P. Chang and H. M. Grandin, *Can. J. Chem.-Rev. Can. Chim.*, 1999, 77, 1813.
- 641 W. Hoffbauer, S. Wefing, G. Klosters, F. Frick and M. Jansen, Solid State Nucl. Magn. Reson., 1999, 14, 211.
- 642 T. Sen, R. Poupko, U. Fleischer, H. Zimmermann and Z. Luz, J. Am. Chem. Soc., 2000, 122, 889.
- 643 K. Horiuchi, H. Takayama, S. Ishimaru and R. Ikeda, *Bull. Chem. Soc. Jpn.*, 2000, 73, 307.
- 644 G. Wojcik, M. M. Szostak, T. Misiaszek, Z. Pajak, J. Wasicki, H. A. Kolodziej and P. Freundlich, *Chem. Phys.*, 1999, **249**, 201.
- 645 H. Y. He, J. T. Dias, J. Foulkes and J. Klinowski, *Phys. Chem. Chem. Phys.*, 2000, 2, 2651.
- 646 M. Muller, A. J. Edwards, K. Prout, W. M. Simpson and S. J. Heyes, *Chem. Mater.*, 2000, 12, 1314.
- 647 A. Schmidt, S. Kababya, M. Appel, S. Khatib, M. Botoshansky and Y. Eichen, J. Am. Chem. Soc., 1999, 121, 11291.
- 648 B. V. Schonwandt and H. J. Jakobsen, J. Solid State Chem., 1999, 145, 10.
- 649 J. Parmentier, P. R. Bodart, L. Audoin, G. Massouras, D. P. Thompson, R. K. Harris, P. Goursat and J. L. Besson, J. Solid State Chem., 2000, 149, 16.

- 650 X. Bourdon, A. R. Grimmer and V. B. Cajipe, *Chem. Mater.*, 1999, **11**, 2680.
- 651 B. F. Borisov, E. V. Charnaya, T. Loeser, D. Michel, C. Tien, C. S. Wur and Y. A. Kumzerov, J. Phys.-Condens. Matter, 1999, 11, 10259.
- 652 M. J. Wagner, A. S. Ichimura, R. H. Huang, R. C. Phillips and J. L. Dye, J. Phys. Chem. B, 2000, 104, 1078.
- 653 A. Hilgeroth, G. Hempel, U. Baumeister and D. Reichert, *Magn. Reson. Chem.*, 1999, 37, 376.
- 654 A.E. Aliev, L. Elizabe, B.M. Kariuki, H. Kirschnick, J.M. Thomas, M. Epple, K.D.M. Harris. *Chem. Eur. J.*, 2000, **6**, 1120.
- 655 P. K. Isbester, A. Zalusky, D. H. Lewis, M. C. Douskey, M. J. Pomije, K. R. Mann and E. J. Munson, *Catal. Today*, 1999, 49, 363.
- 656 M. Hunger, M. Seiler and T. Horvath, Catal. Lett., 1999, 57, 199.
- 657 L. K. Carlson, P. K. Isbester and E. J. Munson, *Solid State Nucl. Magn. Reson.*, 2000, **16**, 93.
- 658 T. Mildner, H. Ernst, D. Freude, J. Karger and U. Winkler, *Magn. Reson. Chem.*, 1999, 37, S38.
- 659 T. Horvath, M. Seiler and M. Hunger, *Appl. Catal. A Gen.*, 2000, **193**, 227.
- 660 S. J. Hwang and D. Raftery, Catal. Today, 1999, 49, 353.
- 661 S. Pilkenton, S. J. Hwang and D. Raftery, J. Phys. Chem. B, 1999, 103, 11152.
- 662 H. Mori, H. Kono, M. Terano, A. Nosov and V. A. Zakharov, *Macromol. Rapid Commun.*, 1999, **20**, 536.